Bright

Publisher

Submitted 13 June 2025
Accepted 13 July 2025
Published 13 November 2025

Corresponding author
Alphin Stephanus,
alphinstephanus@polnam.ac.id

Additional Information and
Declarations can be found on

DOI:

@ Copyright
2025 Stephanus and Mbitu

Distributed under
Creative Commons CC-BY 4.0

Enhancing Short-Term Price
Prediction of TON-IRT Using LSTM
Neural Networks: A Machine
Learning Approach in Blockchain
Trading Analytics

Alphin Stephanus'’ Elisabeth Tansiana Mbitu?

.2Department of Electrical Engineering, Politeknik Negeri Ambon, Maluku 97234, Indonesia

ABSTRACT

This study explores the application of Long Short-Term Memory (LSTM) neural
networks for predicting short-term price movements of the TON-IRT trading pair in
the cryptocurrency market. Given the high volatility and complexity of cryptocurrency
prices, traditional models like Linear Regression and ARIMA often fail to capture the
underlying non-linear and temporal dependencies. To address this, we implemented
an LSTM model, a type of recurrent neural network specifically designed for
sequential data. The model was trained on historical hourly data, utilizing various
technical indicators and lagged features to improve prediction accuracy. Our results
demonstrated that the LSTM model significantly outperformed traditional methods,
achieving a Mean Absolute Error (MAE) of 0.0274, a Root Mean Squared Error
(RMSE) of 0.0321, and an R-squared (R2) value of 0.8743, which indicated that the
model captured over 87% of the variance in the actual price data. Visual analysis of
predicted versus actual prices revealed a strong alignment, though some lag in
predictions during high-volatility periods was observed. The model also showed a
tendency to underestimate price peaks, highlighting areas for further refinement. This
study contributes to the field of blockchain trading analytics by demonstrating the
effectiveness of LSTM models in addressing the unique challenges of cryptocurrency
price prediction. Practical implications for traders and investors include the ability to
enhance trading strategies, optimize entry and exit points, and improve risk
management. Future research could integrate additional external factors, such as
market sentiment and news events, or explore advanced architectures like
Transformer models. By doing so, the predictive capabilities of LSTM models in
volatile markets like cryptocurrency could be further refined, leading to more robust
and accurate forecasting tools for financial decision-making.

LSTM Neural Networks, Cryptocurrency Price Prediction, Blockchain
Trading Analytics, TON-IRT, Machine Learning

Blockchain technology emerged as a transformative force in financial markets,
distinguished by its decentralized structure and capability to enhance
transparency, security, and transaction efficiency. Initially gaining recognition
through cryptocurrencies such as Bitcoin, blockchain's potential extended
beyond digital currencies, influencing various financial sectors. The technology
operated as a distributed ledger, recording transactions across a network of
computers, ensuring that records remained immutable and transparent. This
characteristic was pivotal in financial markets where trust played a critical role,
as it eliminated the need for intermediaries, reducing costs and accelerating
transaction processes [1], [2]. By providing a secure and tamper-proof method
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for recording transactions, blockchain contributed to increased trust among
users and stakeholders in the financial ecosystem [3], [4]. The growing influence
of blockchain in financial markets was evidenced by its applications across
various financial services, including trade finance, payment systems, and
investment management. Blockchain technology can potentially revolutionize
trade finance by streamlining traditionally complex processes, such as handling
letters of credit, which often involve extensive paperwork and delays [4]. The
adoption of smart contracts—self-executing contracts with the terms of the
agreement embedded directly into the code—allowed financial institutions to
automate these processes, thereby significantly reducing operational risks and
enhancing overall efficiency [5], [6]. Furthermore, blockchain integration in
supply chain finance showed promise in mitigating credit risks and improving
the financial health of small and medium-sized enterprises (SMEs), highlighting
its capacity to foster more resilient financial frameworks.

Cryptocurrency trading emerged as a significant aspect of the global financial
landscape, gaining widespread traction due to its potential for high returns and
the allure of a rapidly evolving market. Unlike traditional financial assets,
cryptocurrencies are decentralized digital currencies that operate on blockchain
technology, which ensures secure and transparent transactions. However, this
decentralized nature, coupled with a lack of regulation and the influence of
speculative trading, has contributed to the inherent volatility of cryptocurrency
markets. This volatility presents unique opportunities for investors to achieve
substantial gains and poses significant risks, making effective market navigation
a critical concern [7], [8]. As cryptocurrencies gained recognition as alternative
investment vehicles, the demand for tools that could provide reliable insights
into price movements grew, driving the need for sophisticated predictive models
in this domain. The defining characteristic of cryptocurrencies—extreme price
volatility —distinguishes them from traditional financial instruments such as
stocks or bonds. Cryptocurrency prices can fluctuate dramatically within short
time frames, driven by various factors, including market sentiment,
technological developments, regulatory news, and macroeconomic trends. This
unpredictability has challenged traditional statistical models like GARCH, often
employed for volatility forecasting in financial markets but falling short in
capturing the complex, time-dependent nature of cryptocurrency price
movements [8]. As a result, researchers have increasingly turned to advanced
machine learning and deep learning techniques, such as Long Short-Term
Memory (LSTM) networks, which are well-suited to recognizing complex
patterns and temporal dependencies in sequential data, thereby offering a more
robust approach to cryptocurrency price prediction [9],

The Open Network (TON) represented a significant advancement in the
blockchain ecosystem, primarily designed to improve the scalability and
usability of decentralized applications (dApps) and services. Originally
developed as part of the Telegram project, TON sought to address several
critical limitations encountered by existing blockchain networks, including slow
transaction speeds, scalability challenges, and suboptimal user experiences.
TON’s architecture was built on a multi-blockchain structure that allowed for the
parallel processing of transactions, significantly increasing throughput and
reducing latency . This innovative approach positioned TON as a potential
leader in the blockchain space, particularly for applications requiring high
transaction volumes and rapid processing times, such as financial services and
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supply chain management. TON's importance in the blockchain ecosystem was
further highlighted by its unique consensus mechanism known as Proof-of-
Stake (PoS), which enhanced security while promoting energy efficiency
compared to the more traditional Proof-of-Work (PoW) systems . As
concerns over the environmental impact of blockchain technology grew, TON's
PoS mechanism provided a more sustainable alternative by allowing
participants to validate transactions and create new blocks based on the amount
of TON they were willing to "stake." This approach minimised energy
consumption and fostered a more inclusive and participatory network by
enabling a wider range of participants to engage in the validation process.
These attributes underscored TON's commitment to technological innovation,
sustainability, and inclusivity within the blockchain community.

The TON-IRT trading pair, involving TON and the IRT token, represented a
significant development in the cryptocurrency market, offering traders and
investors a unique avenue to diversify their portfolios and capitalize on emerging
blockchain opportunities. TON, backed by its advanced blockchain
infrastructure, provided enhanced transaction speed and scalability, making it a
desirable platform for various dApps and services , . The integration of
IRT, which functioned as a utility token within its ecosystem, amplified the
potential for innovative financial products and services, catering to the growing
demand for decentralized finance (DeFi) solutions. The relevance of the TON-
IRT trading pair lies in its capacity to provide liquidity and facilitate transactions
within the expanding TON ecosystem. As TON continued to grow and attract
developers and users, the demand for IRT was expected to rise, creating
lucrative opportunities for traders to benefit from price fluctuations . This
trading pair enabled investors to engage in speculative trading, leveraging the
inherent volatility typical of cryptocurrency markets. Trading IRT against TON
also offered a means to hedge against market fluctuations, allowing traders to
adjust their positions in response to shifts in market sentiment and the
performance metrics of both tokens , . This dynamic made the TON-IRT
pair particularly appealing for traders seeking to optimize their strategies in the
rapidly evolving digital asset landscape.

Predicting short-term price movements in cryptocurrency markets posed
significant challenges due to the inherent high volatility and complex market
dynamics. Cryptocurrencies, including trading pairs like TON-IRT, exhibited
frequent and dramatic price fluctuations within short time frames, driven by
various factors such as market sentiment, regulatory news, and macroeconomic
conditions. This volatility made accurate price prediction particularly difficult, as
traditional models often struggled to capture the intricate and rapidly changing
relationships within the data. The unpredictability of these price movements
introduced substantial risks for traders, making developing robust predictive
models essential for effective market participation. Accurate intraday price
prediction was critical for enhancing trading strategies, as it enabled traders to
make informed decisions and better manage the risks associated with the
volatile nature of cryptocurrency markets. Reliable predictions could help
traders optimize entry and exit points, thereby maximizing profits and minimizing
potential losses. In highly competitive and fast-paced trading environments,
such as those seen with TON-IRT, accurately forecasting price movements
provided a strategic advantage. Consequently, improving the precision of short-
term price predictions was a technical challenge and a practical necessity for
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traders seeking to succeed in the cryptocurrency market.

The primary goal of this study was to develop a predictive model for short-term
price movements of TON-IRT using historical hourly data. Given the challenges
posed by the volatility and complexity of cryptocurrency markets, the study
aimed to leverage advanced machine learning techniques to enhance
prediction accuracy and support more effective trading strategies. The study's
objectives were threefold: First, to explore the application of Long Short-Term
Memory (LSTM) Neural Networks in predicting TON-IRT prices. LSTM networks
were chosen due to their proven ability to model temporal dependencies and
handle the non-linear relationships often present in financial time series data.
Second, the study aimed to evaluate the performance of the LSTM model using
various metrics, such as Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Mean Absolute Percentage Error (MAPE), to ensure the
robustness and reliability of the predictions. Finally, the study sought to compare
the LSTM model's performance against traditional forecasting methods to
demonstrate its effectiveness in the context of TON-IRT price prediction.

This study contributed to the field of blockchain analytics by providing a novel
approach to short-term price prediction in cryptocurrency markets, specifically
focusing on the TON-IRT trading pair. By employing LSTM Neural Networks,
the study addressed the limitations of traditional forecasting models and
highlighted the potential of deep learning techniques in capturing the complex
dynamics of cryptocurrency prices. The insights gained from this research could
pave the way for more sophisticated predictive models that better accommodate
the unique characteristics of blockchain-based financial assets. The potential
implications of this study extended beyond academic contributions to include
practical benefits for traders and the broader financial market. For traders, the
enhanced predictive accuracy offered by the LSTM model could lead to more
informed trading decisions, improved risk management, and increased
profitability. Moreover, the study's findings underscored the importance of
integrating advanced analytics into trading strategies, which could drive further
innovation in developing algorithmic trading tools. For the broader financial
market, the successful application of LSTM networks in cryptocurrency price
prediction demonstrated the growing relevance of machine learning in financial
analytics, encouraging the adoption of similar approaches in other areas of
financial forecasting and decision-making.

Blockchain and Cryptocurrency Trading

Blockchain technology has undergone significant evolution since its inception.
It has fundamentally transformed various sectors by providing decentralized,
secure, and transparent systems for data management and transactions. The
history of blockchain can be divided into three primary generations, each
characterized by distinct technological advancements and applications that
expanded its utility and scope. The first generation of blockchain, commonly
referred to as Blockchain 1.0, emerged with the introduction of Bitcoin in 2008
by an individual or group known as Satoshi Nakamoto. This initial iteration
focused primarily on enabling peer-to-peer transactions without the need for
intermediaries, thereby revolutionizing the concept of digital currency

Bitcoin's underlying technology utilized a decentralized ledger system that
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recorded transactions securely and imminently, ensuring transparency and
integrity in financial exchanges. This approach provided the foundational
framework for subsequent developments in the blockchain space, as it
demonstrated the feasibility of decentralized systems operating on a global
scale without reliance on centralized authorities . As blockchain technology
matured, the second generation, or Blockchain 2.0, began to take shape with
the introduction of platforms like Ethereum in 2015. Ethereum expanded the
capabilities of blockchain beyond simple monetary transactions by incorporating
smart contracts—self-executing contracts where the agreement terms were
directly written into code . This innovation enabled the creation dApps that
could function autonomously on the blockchain, significantly broadening the
scope of blockchain’s applications across various industries, including finance,
supply chain management, and healthcare. The emergence of decentralized
finance (DeFi) and non-fungible tokens (NFTs) during this period underscored
the versatility and expansive potential of blockchain technology, as these
innovations disrupted traditional business models and introduced new avenues
for value creation. The evolution of blockchain continued into the third
generation, known as Blockchain 3.0, which aimed to address the limitations of
earlier generations, such as scalability, transaction speed, and energy
consumption. This phase enhanced scalability, interoperability, and user
experience across various blockchain networks . Innovations in this
generation included the development of more efficient consensus mechanisms,
such as Proof-of-Stake (PoS) and delegated Proof-of-Stake (dPoS), as well as
solutions for cross-chain interoperability that allowed different blockchains to
communicate and transact with one another (Wang et al.,, 2019). These
advancements were geared towards integrating blockchain technology into
traditional sectors, including government services, healthcare, and energy
management, thereby promoting broader adoption and practical applications
beyond the confines of cryptocurrency

Volatility stood out as one of the most defining characteristics of cryptocurrency
markets. Unlike traditional assets, Cryptocurrencies were known for their
dramatic price fluctuations, often occurring within very short time frames. For
instance, major cryptocurrencies like Bitcoin frequently experienced swings of
50% or more in a single year, while lesser-known cryptocurrencies could exhibit
even greater levels of volatility , . This high volatility could be attributed
to various factors, including shifts in market sentiment, regulatory news, and
broader macroeconomic conditions. Research indicated that there was a
positive correlation between trading volume and price volatility, suggesting that
increased trading activity often led to more pronounced price movements ,

. While this volatility presented significant opportunities for investors to
achieve substantial gains, it also posed considerable risks, as rapid price
changes could just as easily result in substantial losses. A complex interplay of
factors, including liquidity, market sentiment, and the distinctive characteristics
of various digital assets, influenced the trading dynamics within cryptocurrency
markets. Liquidity, or the ease with which an asset could be bought or sold
without affecting its price, played a critical role in determining price stability and
trading efficiency. llliquid cryptocurrencies often exhibit higher price delays and
market inefficiencies than their more liquid counterparts, making them more
susceptible to price manipulation . Additionally, market sentiment was a
powerful driver of trading behavior, with news events and social media activity
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frequently causing rapid price shifts. For instance, high-profile announcements
from influential figures in the cryptocurrency space could lead to immediate
spikes or declines in asset values : . Furthermore, the rise of
decentralized finance (DeFi) platforms introduced new dynamics into the
market, enabling users to participate in activities such as lending, borrowing,
and yield farming, adding complexity layers to the trading landscape

Price Prediction in Financial Markets

Traditional methods such as ARIMA (AutoRegressive Integrated Moving
Average) and linear regression have been extensively employed in financial
modeling and forecasting. These models have been valuable tools in predicting
price movements in traditional financial markets, where data often exhibit more
predictable patterns and relatively stable relationships between variables.
However, their application in cryptocurrency markets revealed significant
limitations due to their unique characteristics, particularly their high volatility,
non-stationarity, and complex dynamics of trading behavior. One of the primary
challenges traditional models like ARIMA faced in cryptocurrency markets was
their assumption of data stationarity. Cryptocurrency prices are notoriously
volatile, with fluctuations that frequently exceed those observed in traditional
asset classes. This volatility, coupled with the non-stationary nature of
cryptocurrency time series data, posed a significant challenge for ARIMA
models, which require stationary input data to produce reliable forecasts

The presence of non-stationary data often led to unreliable and spurious results
when using these models, as they failed to account for the ever-changing
underlying market conditions. Moreover, standard correlation methods
employed in traditional econometric models, such as those based on Pearson
correlation, also required stationarity and could, therefore, misrepresent the true
relationships between variables in the context of cryptocurrency trading
Consequently, traditional models often fell short of accurately capturing the true
dynamics of price movements in these highly volatile markets.

Machine learning and deep learning techniques gained significant traction in the
field of cryptocurrency price prediction, offering advanced methodologies that
addressed the complexities and unique characteristics of cryptocurrency
markets. These techniques leveraged large datasets and sophisticated
algorithms to identify patterns and make predictions, thus providing traders and
investors with valuable insights. Unlike traditional econometric models, ML and
DL approaches could handle non-linear relationships and adapt to the high
volatility and dynamic nature of cryptocurrency prices. Machine learning
encompassed a variety of algorithms that learned from data and improved their
performance over time. Traditional ML methods, such as decision trees, support
vector machines (SVM), and random forests, were applied to predict
cryptocurrency prices by analyzing historical price data and identifying
correlations with various market indicators. For instance, researchers
highlighted the versatility of machine learning in managing cryptocurrency
portfolios and predicting price fluctuations, demonstrating its effectiveness in
real-world decision-making scenarios . Additionally, ML-based non-
parametric methods became increasingly popular for analyzing financial time
series, including cryptocurrencies, due to their ability to capture complex, non-
linear relationships in the data [8]. These capabilities made machine learning a
valuable tool for price prediction in volatile and rapidly changing markets.
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Long Short-Term Memory (LSTM) Networks

LSTM networks were a specialized type of recurrent neural network (RNN)
specifically designed to effectively learn from sequential data, making them
particularly suitable for time series prediction tasks. Unlike traditional RNNs,
which struggled with long-term dependencies due to issues such as vanishing
and exploding gradients, LSTMs addressed these limitations through their
unique architecture. This allowed LSTMs to maintain and manage information
over extended sequences, making them adept at capturing temporal
dependencies in data. LSTM networks were engineered with memory cells and
a set of gating mechanisms—including input, forget, and output gates—that
regulated the flow of information through the network, enabling them to
selectively retain or discard information as needed at each time step. This
capability was critical for tasks requiring the recognition of patterns over long
sequences, such as financial time series forecasting. The memory cells in LSTM
networks functioned to retain relevant information over extended periods, which
was crucial for accurate time series prediction. The input gate determined which
information was added to the cell state, the forget gate controlled which
information was discarded, and the output gate decided what information from
the cell state was used to generate the output at each step. This configuration
allowed LSTMs to maintain a flow of relevant information while mitigating the
impact of less important data, thereby effectively capturing long-term
correlations in sequential data . The architecture's ability to manage long-
term dependencies made LSTMs particularly effective in time series prediction,
as they could learn the significance of past events on future outcomes without
being hindered by the limitations that affected traditional RNNs. Moreover, the
versatility of LSTM networks extends across various domains, including finance,
healthcare, and environmental science. For instance, LSTM models were
successfully applied to predict cardiovascular health trajectories from electronic
health records, showcasing their adaptability to different sequential data types

. Similarly, LSTMs were employed in predicting water quality parameters
and atmospheric conditions, further demonstrating their broad applicability and
effectiveness in handling a wide range of time series prediction tasks , .
This wide applicability made LSTMs valuable in diverse fields, enhancing their
role in predictive modeling.

Previous Studies on Price Prediction Using LSTM

The application of Long Short-Term Memory (LSTM) networks in financial and
cryptocurrency markets garnered significant attention due to their capability to
model complex temporal dependencies in time series data. Various studies
explored the effectiveness of LSTM in predicting cryptocurrency prices, yielding
promising results and valuable insights into its potential for enhancing trading
strategies. Research studied the top three cryptocurrencies, utilizing LSTM
for price forecasting. The results indicated a Mean Absolute Percentage Error
(MAPE) of approximately 1.47%, demonstrating the model’s effectiveness in
capturing price trends. The study specifically highlighted the performance of
LSTM in predicting the price of Dogecoin (DOGE), achieving a Root Mean
Square Error (RMSE) of 0.0630, which underscored the model’s precision in
volatile markets . Similarly, focused on the volatility of cryptocurrency
prices and assessed LSTM's predictive capabilities, confirming that LSTM was
suitable for forecasting volatile cryptocurrency prices. Their research provided
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insights into future price movements and emphasized the model’s adaptability
to rapid changes in market conditions, which was crucial for effective trading
strategies.

Research compared various machine learning and deep learning
algorithms, including LSTM and Bi-LSTM, in forecasting Bitcoin prices. The
findings suggested that deep learning models, particularly LSTM, outperformed
traditional methods, highlighting their potential in algorithmic trading strategies.
This study reinforced the notion that LSTM could effectively capture the
nonlinear patterns inherent in cryptocurrency price movements, making it a
valuable tool for traders seeking to navigate the complexities of these markets

. In another study, applied LSTM with time-varying parameters to
predict cryptocurrency prices, finding that LSTM’s ability to adapt to changing
market conditions significantly enhanced forecasting accuracy. Their research
emphasized the importance of feature extraction in improving the performance
of LSTM models in cryptocurrency predictions . Further highlighting the
effectiveness of LSTM, conducted a comparative study between LSTM and
traditional statistical models, such as ARIMA, for forecasting cryptocurrency
price trends. The study concluded that LSTM provided more reliable forecasts
than traditional models, reinforcing its suitability for the dynamic nature of
cryptocurrency markets . Another study by explored the relationship
between social media sentiment and cryptocurrency prices using LSTM, finding
that incorporating sentiment analysis significantly improved prediction accuracy.
This demonstrated the model’s versatility in integrating external factors affecting
market behavior, further enhancing its utility in price prediction

The research method for this study consists of several steps to ensure a
comprehensive and accurate analysis. The flowchart in outlines the
detailed steps of the research method.

Data Collection Asi“g\ Handle with Forward or
EI“’ TON-IRT hourly trading _‘—’ < o Yesk Backward Fill

Feature Engineering
N Lag, SMA, EMA, RSI, MACD

Train Model Model
and Validate Development

Model
Optimal?

Research Method Flowchart

Data Description

The dataset used in this study consisted of hourly trading data for the TON—-IRT
pair, capturing key trading metrics essential for developing the predictive model.
The dataset included the following columns: Epoch timestamp, DateTime,
Volume, Open, High, Low, and Close prices.

The Epoch timestamp provided a numerical representation of the date and time
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for each observation, while the DateTime column offered a human-readable
format for easier interpretation. The Volume column recorded the total amount
of TON traded against IRT during each hour, representing market activity. The
Open, High, Low, and Close columns represented the hourly price data—
specifically, the opening price, the highest and lowest prices within the hour,
and the closing price. Collectively, these features offered a comprehensive view
of the hourly trading behavior, forming the foundation for subsequent time series
analysis and predictive modeling.

The data was obtained from a reputable cryptocurrency exchange, ensuring the
reliability and integrity of the trading records. However, as with most real-world
financial datasets, preprocessing was required to prepare the data for analysis
and to meet the input requirements of the LSTM neural network.

An initial inspection was performed to identify missing or inconsistent values, as
these could disrupt the continuity of the time series and degrade model
performance. Missing values, if detected, were handled using forward-fill or
backward-fill techniques, depending on the context. This method preserved the
temporal sequence of the dataset without introducing bias, ensuring that the
time series remained continuous and suitable for sequential learning.

The DateTime column was then reformatted into a standardized datetime
structure and set as the index of the DataFrame. This conversion enabled
efficient manipulation and chronological alignment of data points—an essential
step for time series forecasting models such as LSTM, which depend on
preserving temporal dependencies between observations.

Finally, all numerical features were normalized to a common scale, typically
between 0 and 1, using Min—Max scaling. This normalization stabilized the
neural network training process by preventing features with larger numerical
ranges from dominating the learning process. The transformation was
performed using Equation (1):

X —X,,;
Xnormz—mm (1)

Xmax - Xmin

The Volume, Open, High, Low, and Close features were normalized using this
method, ensuring consistent scaling across variables. This preprocessing
pipeline produced a clean, standardized, and well-structured dataset optimized
for LSTM model input, providing the foundation for accurate and robust short-
term price prediction of the TON—IRT trading pair.

Exploratory Data Analysis (EDA)

The objective of the EDA was to gain initial insights into the dataset and
understand the distributions and relationships among the variables. This step
was crucial for identifying underlying patterns, detecting anomalies, and
informing the subsequent modeling process. The EDA provided a foundation
for understanding the characteristics of the TON-IRT hourly trading data,
helping to align the predictive model’s design with the nuances of the dataset.
Several visualization techniques were employed to explore the data. Line plots
in of the Open, High, Low, and Close prices over time were generated
to visualize the price trends and fluctuations within the dataset. These plots
revealed the volatility and overall trends in the TON-IRT trading pair, highlighting
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periods of rapid price changes and more stable phases. This visualization was
instrumental in identifying key moments of price movement, such as spikes and
drops, which were critical for understanding the timing and magnitude of
changes in the market. By examining these time series plots, it was possible to
observe the cyclical nature of price movements, which informed the need for a
model capable of capturing such temporal dependencies.

Open, High, Low, Close Prices Over Time

— open

High
— Low
— Close

500000

400000

£
£ 300000
H

s
H

200000

100000

2023-07 2023-09 2023-11 2024-01 2024-03 2024-05 2024-07
DateTime

Open, High, Low, Close Prices Over Time

Volume analysis was also conducted to identify trading activity patterns, shown
in figure 3. A line plot of the trading volume over time was used to visualize
periods of high and low market activity. This analysis helped identify correlations
between trading volume and price movements, as spikes in volume often
coincided with significant price changes, suggesting that volume could be a
valuable predictor of market behavior. Understanding these patterns was
essential for developing the predictive model, as it highlighted the importance
of including volume as a key feature. Additionally, volume analysis provided
insights into liquidity conditions and potential periods of heightened market
interest, which could impact the reliability of price predictions.

Volume Over Time

175000

150000

125000

100000

zed volume

2023-07 2023-09 202311 2024-01 2024-03 2024-05 202407
DateTime

Volume Over Time

A correlation matrix heatmap was used to explore the relationships between the
various numerical variables in the dataset, including Volume, Open, High, Low,
and Close prices, shown in figure 4. The heatmap visually represented the
strength and direction of the linear relationships between these variables, with
color gradients indicating the degree of correlation. This analysis revealed
strong positive correlations among the price variables (Open, High, Low, and
Close), which was expected given their interconnected nature within each
trading hour. The correlation between Volume and price variables was also
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examined to assess whether trading activity had a significant relationship with
price movements. The insights gained from the correlation matrix helped refine
the feature selection process for the LSTM model, ensuring that the most
relevant variables were considered for prediction.

I 10

-0.8

Correlation Matrix of Trading Variables

Epoch timestamp
Volume

Open -

-0.7

High

- 0.6

IO.S
0.4

Close 4

Epoch t\rlnestamp Volume Open High Low Close
Correlation Matrix of Trading Variables

Feature Engineering

Feature engineering represented a critical stage in developing the predictive
model, as it involved constructing new variables that enhanced the model’s
capacity to learn from the data and generate accurate forecasts. For the LSTM
(Long Short-Term Memory) neural network, which relies on sequential data to
capture temporal dependencies, this process focused on generating lagged
features, moving averages, and technical indicators that could provide deeper
insights into the short-term price dynamics of the TON—IRT trading pair.

Lagged features were introduced to incorporate historical information into the
model, allowing it to learn how past price behaviors influence future market
movements. These features included prior values of the target variables —
Open, High, Low, Close, and Volume — over a defined number of time steps.
By integrating lagged variables, the model could effectively recognize temporal
dependencies, which are essential in time series forecasting. Several lag
intervals were evaluated to identify the optimal sequence length that maximized
predictive performance. This ensured the LSTM model could learn meaningful
relationships between successive time steps, a fundamental requirement for
accurate time-dependent predictions.

To smooth short-term fluctuations and emphasize longer-term trends, moving
averages were computed and incorporated as additional features. Both Simple
Moving Average (SMA) and Exponential Moving Average (EMA) were
calculated for different time windows (e.g., 5, 10, and 20 hours), enabling the
model to capture varying trend durations. The SMA and EMA were defined as
follows:
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(3)

2
EMA; = (P X +EMA; 1 X (1 ———
¢ = (P x—) + EMA_y X (1= ——)

n+1
Here, P;represents the asset price at time t, and ndenotes the chosen window
size.

Moving averages helped filter out market noise, highlight overall price direction,
and stabilize the learning process in volatile market conditions. Including these
smoothed trend indicators improved the model’s ability to distinguish between
random price fluctuations and meaningful market shifts.

Beyond lagged and average-based features, technical indicators were
computed to capture momentum, volatility, and potential market reversal
signals. Two widely used indicators were included: the Relative Strength Index
(RSI) and the Moving Average Convergence Divergence (MACD).

The RSI measures momentum and helps identify overbought or oversold
conditions, signaling possible price reversals. It was calculated as:

RSI =100 100
- B | 4 Average Gain (4)

Average Loss

The MACD measures trend strength and direction by evaluating the difference
between two exponential moving averages, typically over 12 and 26 periods:

MACD = EMAlZ - EMA26 (5)

Together, these indicators provided valuable contextual information about
market sentiment and momentum that was not directly visible from raw price
data.

The final feature set combined lagged variables, moving averages, and
technical indicators (RSl and MACD), all of which were normalized using Min—
Max scaling to ensure consistent input magnitudes. This comprehensive set of
features allowed the LSTM model to learn complex temporal relationships and
market dynamics effectively. By integrating both statistical and technical
aspects of the market, the engineered features significantly enhanced the
model’s ability to generate robust and precise short-term price forecasts for the
TON-IRT trading pair — aligning with the study’s objective of developing a
reliable, data-driven predictive tool for cryptocurrency traders and investors.

Model Development

The development of the LSTM model for predicting short-term price movements
of the TON-IRT trading pair involved designing an architecture tailored to
capture the temporal dependencies and complex patterns inherent in time
series data. The model architecture consisted of several key components,
including the input layer, hidden LSTM layers, and the output layer, each
contributing to the overall predictive capability of the model.
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The input layer was designed to receive the sequential data generated from the
feature engineering process, which included lagged features, moving averages,
and various technical indicators. Each input sequence represented a fixed
number of past time steps, allowing the model to learn from historical data to
predict future prices. The hidden layers were composed of multiple LSTM units,
each containing memory cells and gating mechanisms —specifically, the input,
forget, and output gates—that controlled the flow of information through the
network. This configuration enabled the LSTM layers to retain relevant
information over extended sequences and effectively manage temporal
dependencies, which were crucial for accurate time series prediction. The
model architecture included two stacked LSTM layers, which enhanced the
model’s depth and capacity to learn complex sequential patterns. A dropout
layer followed these layers to prevent overfitting by randomly omitting a fraction
of the LSTM units during training, thereby improving the model's generalizability
to unseen data.

The output layer was a fully connected dense layer with a single neuron,
corresponding to the predicted price for the next time step. This layer used a
linear activation function appropriate for regression tasks involving continuous
output values such as price predictions. The overall architecture was designed
to balance complexity and performance, ensuring that the model was sufficiently
robust to capture the nuances of the data while avoiding excessive
computational overhead.

Hyperparameter tuning was a critical aspect of the model development process,
aimed at optimizing the model’s performance by adjusting key parameters. The
tuning process involved experimenting with various configurations of the
learning rate, the number of LSTM layers, units within each layer, batch size,
and epochs. The learning rate, which determined the step size at each iteration
while moving toward a minimum of the loss function, was fine-tuned to ensure
that the model converged efficiently without overshooting. A grid search
approach was employed to systematically evaluate different combinations of
hyperparameters, allowing for the identification of the optimal settings that
minimized the prediction error.

The number of LSTM units in each layer was also tuned, with initial tests
conducted using 50, 100, and 150 units to assess the impact on model
accuracy. It was found that 100 units per LSTM layer provided the best balance
between computational efficiency and predictive performance. Additionally, the
batch size, which influenced how many training samples the model processed
before updating the weights, was optimized by testing sizes of 16, 32, and 64.
The model performed optimally with a batch size of 32, providing a good trade-
off between training speed and stability. The final model was trained for 100
epochs, with early stopping implemented to prevent overfitting by halting the
training process when the validation loss ceased to improve.

These tuning efforts ensured that the LSTM model was finely calibrated to the
specific characteristics of the TON-IRT dataset, enhancing its ability to make
accurate short-term price predictions. The iterative process of refining the model
architecture and hyperparameters was essential in developing a robust
predictive tool that could provide valuable insights for traders and investors
operating in the highly volatile cryptocurrency market. The LSTM model
development process can be summarized in algorithm.
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Algorithm 1. LSTM Model Training Process

Given:
Dataset D = {(x;, y.)}_,, learning rate n, sequence length T, batch size B, and
maximum epochs E.

1. Preprocessing:
Normalize input features using Min—Max scaling:
x' = X—Xmin
Xmax~Xmin
2. Sequence Generation:
Create input—output pairs
Xi = [Xi—r41 XY = Vi
3. Initialize Model Parameters:
Randomly initialize Wy, W;, W¢, W,, W, and by, b;, b, b,, by,

4. Foreachepoche=12,..,E:

For each batch (X,,Y,) € D:

a. Compute LSTM forward pass using Equations (6—11)
b. Compute prediction ¥, using Equation (12)

c. Calculate loss function (Mean Squared Error):

IR
L= 0%
j=1
d. Backpropagate error through time (BPTT)
e. Update parameters using gradient descent:

0o aL
— —_ [—
Ta0
Validation:
After each epoch, compute validation loss.
If validation loss does not improve for pconsecutive epochs — early stop.

5. Output:
Return optimized parameters 6*and final trained model M*.

Model Training and Validation

The training and validation of the LSTM model involved a systematic approach
to ensure that the model was both accurate and generalizable to new data. The
process began with splitting the dataset into three distinct sets: training,
validation, and test sets. This division was critical for evaluating the model’s
performance and its ability to generalize beyond the data it was trained on. The
dataset was divided with a typical split of 70% for training, 15% for validation,
and 15% for testing. The training set was used to fit the model and learn the
underlying patterns of the data, the validation set was employed to tune the
model's hyperparameters and prevent overfitting, and the test set served as an
independent evaluation of the model's predictive capabilities.

The splitting process maintained the temporal order of the data, which was
essential for time series analysis, ensuring that future data points were not used
to predict past events. This approach respected the sequential nature of the
data and preserved the real-world scenario of forecasting future prices based
on past information. The training process involved feeding the LSTM model with
sequences of historical data, allowing it to learn the relationships between past
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and future prices. During training, the model's performance was continuously
monitored on the validation set. Adjusted to hyperparameters to minimize the
validation loss, thus enhancing the model’s ability to generalize to unseen data.

To further ensure the robustness of the model, cross-validation techniques were
employed. Given the sequential nature of time series data, traditional k-fold
cross-validation was unsuitable, as it would violate the temporal order. Instead,
a time series cross-validation approach, also known as rolling-origin cross-
validation, was used. This method involved repeatedly training the model on
progressively larger training sets while validating on subsequent time periods.
Each fold in this cross-validation technique consisted of a training set that was
expanded incrementally with each iteration, followed by validation on the next
time period not yet included in the training set.

This approach allowed the model to be tested on various time segments of the
data, providing a comprehensive evaluation of its performance across different
market conditions. The time series cross-validation helped identify potential
overfitting issues and ensured that the model maintained high predictive
accuracy across various dataset segments. By validating the model’s
performance at multiple time points, this method provided a robust assessment
of the LSTM model’s ability to predict short-term price movements reliably.

The combination of a strategic data split and the use of time series cross-
validation ensured that the LSTM model was well-trained and thoroughly
validated. These steps were essential in developing a predictive model that
could offer accurate and dependable forecasts in the dynamic and volatile
context of cryptocurrency trading. The rigorous training and validation process
underscored the model's readiness for deployment in real-world trading
scenarios, where robust performance under varying market conditions was
crucial.

Evaluation Metrics

The evaluation of the LSTM model's performance was conducted using a set of
widely recognized metrics: MAE, RMSE, and R2. These metrics provided a
comprehensive assessment of the model’s predictive accuracy and its ability to
generalize to unseen data. Each metric offered a distinct perspective on the
model's performance, allowing for a detailed understanding of how well the
LSTM captured the patterns in the time series data and how accurately it
predicted the short-term price movements of the TON-IRT trading pair.

MAE was used as a primary evaluation metric due to its straightforward
interpretation and robustness in assessing average model prediction errors.
MAE measures the average magnitude of the errors between the predicted and
actual values without considering their direction. It was calculated as the mean
of the absolute differences between the predicted and actual prices in the test
set. A lower MAE value indicated that the model’s predictions were close to the
actual values, highlighting its accuracy. MAE was particularly useful in
understanding the overall prediction performance because it treated all errors
equally and provided a direct measure of average deviation.

RMSE was another critical metric used to evaluate the model’s performance.
RMSE measures the square root of the average squared differences between
the predicted and actual values. This metric placed a higher penalty on larger
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errors, making it more sensitive to outliers compared to MAE. RMSE was
chosen to provide insight into the variance of the prediction errors and to
emphasize the importance of minimizing larger deviations in the model's
predictions. A lower RMSE indicated that the model was accurate on average
and consistent, with fewer large prediction errors. The use of RMSE
complemented MAE by highlighting the impact of significant deviations, which
was critical in the volatile context of cryptocurrency trading.

R?, also known as the coefficient of determination, was employed to assess how
well the model’s predictions matched the actual price movements in terms of
variance explanation. R?2 measures the proportion of the variance in the
dependent variable that is predictable from the independent variables, providing
a statistical measure of how close the data were to the fitted regression line. An
R2 value closer to 1 indicated that the model explained a significant portion of
the variance in the actual prices, reflecting a strong fit. This metric was essential
for evaluating the overall explanatory power of the LSTM model and for
understanding how well it captured the underlying trends in the data.

Together, these metrics—MAE, RMSE, and R-squared—provided a
comprehensive evaluation of the LSTM model’s performance in predicting
short-term price movements of the TON-IRT trading pair. MAE and RMSE
offered insights into the magnitude and consistency of prediction errors, while
R-squared assessed the model's ability to explain the variance in the data. By
employing these metrics, the study ensured a robust evaluation framework that
quantified prediction accuracy and highlighted areas where the model excelled
or required further refinement. This thorough evaluation approach was crucial
in validating the effectiveness of the LSTM neural network for use in real-world
trading analytics within the highly dynamic and volatile cryptocurrency markets.

Model Performance

The performance of the LSTM model was evaluated using key metrics, including
MAE, RMSE, and R2. The results indicated that the LSTM model achieved an
MAE of 0.0274, which suggests that the model's average prediction error was
approximately 2.74% of the scaled range of the target variable. This relatively
low MAE demonstrates the model’s capability to produce predictions that are
closely aligned with the actual values. The RMSE was calculated to be 0.0321,
highlighting that the typical prediction error was small and similar in magnitude
to the MAE, indicating a consistent performance across all data points without
significant outliers.

The R-squared value of 0.8743 revealed that the LSTM model successfully
captured 87.43% of the variance in the actual prices, underscoring its
effectiveness in predicting the short-term price movements of the TON-IRT
trading pair. This high R-squared value suggested that the model was well-
suited for capturing the inherent patterns within the data, although the residuals
and further visual analysis indicated some areas for potential improvement,
particularly in terms of prediction lag and amplitude accuracy.

Visualization played a critical role in further assessing the model’s performance
(see ). A line plot comparing the actual versus predicted prices
demonstrated that the LSTM model could follow the general trend of the price
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movements, with the predicted prices (red line) closely tracking the actual prices
(blue line). However, the plot also revealed a consistent lag in the model's
predictions, especially at points where the actual prices exhibited rapid
changes. This lag suggests that while the model effectively learned the overall
direction of price movements, it occasionally failed to adjust promptly to sudden
shifts in the market.

Actual vs. Predicted Prices

1.00 1 — Actual Prices
— Predicted Prices

0.95

0.90 7 " (U

Y |
e M

f
070 b\l'} AL A ,,w"j\:x v“\(

\
0

Price

T T T T
600 800 1000 1200
Time

6 20
Actual vs Predicted Prices

Error analysis through residual plots ( ) provided additional insights into
the model’s performance. The residual plot displayed the differences between
the actual and predicted prices over time, revealing a positive bias as most
residuals were above zero. This indicates that the model tended to
underestimate the actual prices, particularly during periods of increased
volatility or when prices trended upwards. Additionally, the residuals showed a
pattern of increasing magnitude over time, suggesting that the model's
predictions became less accurate as time progressed. The presence of
heteroscedasticity, indicated by the growing spread of residuals, highlighted
that the variance of prediction errors was not constant, potentially due to
evolving market dynamics that the model struggled to adapt to.
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Residual Plot: Actual - Predicted Prices
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Comparative Analysis

To evaluate the effectiveness of the LSTM model in predicting short-term price
movements of the TON-IRT trading pair, a comparative analysis was conducted
against traditional baseline models, including Linear Regression and ARIMA.
These baseline models were selected due to their widespread use in time series
forecasting and financial market analysis. The Linear Regression model, which
assumes a linear relationship between the input features and the target variable,
and the ARIMA model, known for capturing temporal dependencies in time
series data, provided benchmarks for assessing the LSTM model’s
performance.

The Linear Regression model yielded a Mean Absolute Error (MAE) of 0.0845
and a Root Mean Squared Error (RMSE) of 0.0912, with an R-squared (R?)
value of 0.453. These results indicated that the Linear Regression model was
limited in its ability to capture the non-linear and complex patterns inherent in
cryptocurrency price movements. Similarly, the ARIMA model, which performed
slightly better than Linear Regression, achieved an MAE of 0.0718, an RMSE
of 0.0795, and an R2 value of 0.527. Although ARIMA managed to capture some
temporal patterns, its performance was still significantly lower than that of the
LSTM model, particularly in periods of high volatility and rapid price changes.

The LSTM model outperformed both baseline models across all evaluation
metrics. With an MAE of 0.0274, an RMSE of 0.0321, and an R2 value of 0.8743,
the LSTM demonstrated a superior ability to learn from sequential data and
capture complex, non-linear relationships within the time series. The substantial
improvement in R2 compared to Linear Regression and ARIMA highlighted the
LSTM’s capacity to account for a much larger portion of the variance in the price
data. This result underscores the importance of using models capable of
capturing long-term dependencies and intricate patterns, which are prevalent in
financial time series data like cryptocurrency prices.

To contextualize the LSTM model’s performance, it was benchmarked against
Linear Regression and ARIMA models, which serve as common baselines in
time series forecasting. The comparison focused on the same evaluation
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Model
Linear Regression

ARIMA (AutoRegressive Integrated
Moving Average)

LSTM (Proposed Model)

metrics to ensure consistency and comparability. As shown in ,the LSTM
model significantly outperformed both traditional approaches.

Comparative Performance of Forecasting Models

MAE RMSE R? Remarks

00845 00912 0453 Perfoms poorly due to l‘inear as§umptions; fails to capture
non-linear relationships in volatile data.

Captures some temporal patterns but limited under high
volatility conditions.

Outperforms baselines across all metrics, effectively
modeling non-linear sequential dependencies.

0.0718 0.0795  0.527

0.0274 0.0321 0.8743

It achieved a 67.6% lower MAE than Linear Regression and a 61.8% lower MAE
than ARIMA. Moreover, the LSTM’s R? value (0.8743) was nearly double that
of ARIMA, indicating a superior ability to capture the true dynamics of the
market. The superior performance of the LSTM model can be attributed to its
recurrent architecture, specifically designed to handle data sequences by
maintaining information over time steps. Unlike Linear Regression, which
oversimplifies the data with a straight-line approach, or ARIMA, which relies
heavily on past observations without the ability to recognize more complex
patterns, LSTM networks utilize gates and memory cells to selectively
remember or forget information. This mechanism allows LSTMs to adapt to the
nuanced behavior of financial markets, where past price movements, trends,
and even subtle fluctuations can significantly impact future predictions.

Discussion

The results of this study demonstrate that the LSTM model effectively captured
the short-term price dynamics of the TON—IRT trading pair, providing valuable
insights into cryptocurrency market behavior. The model’s ability to closely align
predicted prices with actual values indicates that it successfully learned the
temporal dependencies and non-linear relationships inherent in financial time
series data. This performance underscores the model’s potential as a predictive
tool for enhancing short-term trading strategies.

The LSTM model exhibited strong accuracy, as evidenced by its low MAE and
RMSE values, along with a high R2 score of 0.8743. These metrics confirm that
the model was capable of explaining a substantial proportion of the variance in
the price data, producing predictions that closely followed the observed market
trends. For traders and analysts, this suggests that LSTM-based forecasting
can support informed decision-making processes, particularly in strategies that
depend on recognizing short-term trends and reversals. The model’s reliable
trend-following capability makes it suitable for momentum-based trading
approaches, where timing entries and exits is crucial to maximizing profitability.

However, visual and residual analyses revealed several notable patterns that
provide deeper insight into the model's performance characteristics. A
consistent observation was the presence of a time lag in the model’s responses
to abrupt price changes. While the LSTM effectively followed established trends,
it occasionally struggled to immediately adapt to rapid market fluctuations, such
as those driven by high-volume trades or news-induced volatility. This lag
highlights a common limitation in recurrent neural networks, where the model
prioritizes long-term temporal dependencies but reacts more slowly to sudden
shifts. In real-world trading scenarios, this delay could translate into missed
opportunities or suboptimal execution timing, particularly in high-frequency or
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volatility-driven environments.

Another critical observation was the underestimation of price peaks, as
indicated by the positive bias in residuals. This suggests that the model was
slightly conservative in forecasting upward movements, potentially due to its
exposure to a training dataset where extreme fluctuations were relatively rare.
Such conservatism, while reducing overprediction risk, may limit the model’s
effectiveness during bullish market phases characterized by sharp upward price
surges. Additionally, residual magnitudes tended to increase over time,
suggesting mild heteroscedasticity in the model’s errors. This pattern indicates
that the model’s predictive accuracy diminished as it progressed through the
dataset, likely due to evolving market conditions that differed from earlier
training samples. These findings emphasize the importance of regular model
retraining and adaptive learning mechanisms to maintain high predictive
performance.

From a practical perspective, the model’s predictive capabilities demonstrate
considerable potential for supporting algorithmic trading systems. Its low error
rates and strong fit to observed trends indicate that it could serve as a core
component within a larger decision-support framework—particularly when
integrated with other technical indicators or sentiment-based signals. For
instance, LSTM predictions could be combined with momentum indicators such
as RSI or MACD to improve entry/exit accuracy, or used alongside sentiment
analysis tools to enhance responsiveness to non-technical market drivers.

Despite its success, several limitations must be acknowledged. The model
relied exclusively on historical price and volume data, omitting critical external
variables such as market sentiment, macroeconomic indicators, and blockchain
network metrics. While this simplification facilitated model development, it
constrained the ability of the LSTM to fully account for exogenous factors that
often drive cryptocurrency volatility. The use of a static, historical dataset further
limited the model’s generalizability, as cryptocurrency markets are inherently
dynamic and exhibit structural changes over time. The observed lag and
underestimation patterns likely stem from this static training context,
underscoring the need for real-time learning and continuous retraining.

To address these limitations, future research should consider integrating multi-
source data that reflects both technical and behavioral aspects of the market.
Incorporating sentiment analysis from social media and news sources could
enhance the model’s ability to anticipate sudden price movements driven by
collective investor psychology. Similarly, including macroeconomic indicators or
on-chain analytics (e.g., transaction volume, wallet activity, liquidity depth) could
provide a more holistic understanding of market forces. On the architectural
front, exploring advanced deep learning structures such as attention-based
LSTMs or Transformer networks could improve adaptability and
responsiveness to volatile conditions.

Additionally, employing online or incremental learning techniques would allow
the model to continuously update its parameters as new data becomes
available, ensuring sustained relevance in fast-changing market environments.
Expanding the dataset to include higher-frequency intervals (e.g., minute-level
data) or cross-asset correlations could further strengthen robustness and
enhance prediction accuracy. Finally, comparative studies involving ensemble
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or hybrid models—combining LSTM with methods such as CNNs, GRUs, or
ARIMA—may vyield synergistic improvements, balancing interpretability and
predictive strength.

In summary, while the LSTM model demonstrated impressive accuracy and
reliability in forecasting short-term price movements, it also revealed the
inherent challenges of modeling highly volatile, data-rich markets like
cryptocurrencies. Continuous adaptation, data diversification, and architectural
innovation remain essential to fully realize the potential of deep learning in
financial time series forecasting.

This study investigated the effectiveness of Long Short-Term Memory (LSTM)
neural networks for predicting short-term price movements of the TON-IRT
trading pair in the blockchain market. The LSTM model demonstrated strong
predictive capabilities, significantly outperforming traditional baseline models
such as Linear Regression and ARIMA. The LSTM achieved a high R-squared
value of 0.8743, indicating that it captured approximately 87.43% of the variance
in the actual price data and exhibited low error metrics with an MAE of 0.0274
and an RMSE of 0.0321. These results underscored the LSTM's ability to handle
complex, non-linear patterns and temporal dependencies in cryptocurrency time
series data, making it a valuable tool for short-term price prediction in volatile
markets.

The analysis also revealed specific areas for improvement, such as the
observed lag in the model’s predictions during periods of rapid market shifts and
the slight underestimation of peak values. These findings suggest that while the
LSTM model was adept at capturing general trends, it occasionally struggled
with adapting to sudden changes in market dynamics. Overall, the study
confirmed that LSTM neural networks offer a robust approach to short-term
price prediction in cryptocurrency, providing actionable insights that can
enhance trading strategies and decision-making processes.

This study contributed to the field of blockchain trading analytics by
demonstrating the applicability and advantages of using LSTM neural networks
for predicting price movements in the cryptocurrency market. The research
highlighted the LSTM model's superior performance compared to traditional
statistical methods, illustrating its potential to handle the unique challenges
posed by the high volatility and complex behavior of cryptocurrency prices.
Integrating advanced machine learning techniques, such as LSTMs, into
blockchain analytics provides a powerful framework for developing predictive
models that can inform trading strategies and improve market efficiency.

Furthermore, this study emphasized the importance of feature engineering and
the careful selection of input variables in enhancing the predictive accuracy of
machine learning models in financial markets. The findings suggest that
incorporating advanced neural network architectures like LSTM can lead to
more reliable and precise forecasting tools, which are crucial for market
participants seeking to gain a competitive edge in the fast-paced and rapidly
evolving blockchain ecosystem.

The results of this study have several practical implications for traders and
investors in the cryptocurrency market. The LSTM model's ability to accurately
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predict short-term price movements can help traders optimize their entry and
exit points, thereby maximizing profits and minimizing losses. By effectively
anticipating market trends and reversals, traders can develop more informed
and strategic approaches to their investments, reducing the reliance on purely
speculative decisions. The model’s predictive insights can also support risk
management efforts by providing early warning signals for potential market
downturns or periods of increased volatility.

For investors, using LSTM-based models could facilitate better portfolio
management and allocation strategies, allowing them to adjust their holdings
based on anticipated market conditions. Additionally, the model's capacity to
integrate with other trading tools and analytics platforms offers the potential for
developing comprehensive trading systems that leverage machine learning for
continuous market analysis and decision support. These practical applications
underscore the relevance of advanced predictive models in enhancing the
overall effectiveness and profitability of trading activities in the cryptocurrency
market.

Future research could build upon the findings of this study by exploring several
avenues for improvement and expansion. One potential direction is the
integration of external factors, such as market sentiment, macroeconomic
indicators, and news events, into the predictive models. Incorporating these
additional data sources could provide a more holistic view of market conditions,
thereby enhancing the model's ability to anticipate abrupt market changes.
Advanced modeling techniques, such as attention-based LSTM networks or
Transformer models, could also be explored to address the limitations observed
in the current study, particularly the lag in predictions during periods of high
volatility.

Another area for future exploration is the application of ensemble learning
techniques, which combine the strengths of multiple models to improve overall
prediction accuracy and robustness. Expanding the dataset to include different
timeframes, cross-asset correlations, and more granular data could further
refine the model's performance. Implementing adaptive learning approaches
that enable the model to update continuously with new data could also enhance
its responsiveness to changing market dynamics, ensuring that the predictive
insights remain relevant and accurate over time.
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