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ABSTRACT 

This study explores the application of Long Short-Term Memory (LSTM) neural 

networks for predicting short-term price movements of the TON-IRT trading pair in 

the cryptocurrency market. Given the high volatility and complexity of cryptocurrency 

prices, traditional models like Linear Regression and ARIMA often fail to capture the 

underlying non-linear and temporal dependencies. To address this, we implemented 

an LSTM model, a type of recurrent neural network specifically designed for 

sequential data. The model was trained on historical hourly data, utilizing various 

technical indicators and lagged features to improve prediction accuracy. Our results 

demonstrated that the LSTM model significantly outperformed traditional methods, 

achieving a Mean Absolute Error (MAE) of 0.0274, a Root Mean Squared Error 

(RMSE) of 0.0321, and an R-squared (R²) value of 0.8743, which indicated that the 

model captured over 87% of the variance in the actual price data. Visual analysis of 

predicted versus actual prices revealed a strong alignment, though some lag in 

predictions during high-volatility periods was observed. The model also showed a 

tendency to underestimate price peaks, highlighting areas for further refinement. This 

study contributes to the field of blockchain trading analytics by demonstrating the 

effectiveness of LSTM models in addressing the unique challenges of cryptocurrency 

price prediction. Practical implications for traders and investors include the ability to 

enhance trading strategies, optimize entry and exit points, and improve risk 

management. Future research could integrate additional external factors, such as 

market sentiment and news events, or explore advanced architectures like 

Transformer models. By doing so, the predictive capabilities of LSTM models in 

volatile markets like cryptocurrency could be further refined, leading to more robust 

and accurate forecasting tools for financial decision-making. 

Keywords LSTM Neural Networks, Cryptocurrency Price Prediction, Blockchain 

Trading Analytics, TON-IRT, Machine Learning 

Introduction 

Blockchain technology emerged as a transformative force in financial markets, 

distinguished by its decentralized structure and capability to enhance 

transparency, security, and transaction efficiency. Initially gaining recognition 

through cryptocurrencies such as Bitcoin, blockchain's potential extended 

beyond digital currencies, influencing various financial sectors. The technology 

operated as a distributed ledger, recording transactions across a network of 

computers, ensuring that records remained immutable and transparent. This 

characteristic was pivotal in financial markets where trust played a critical role, 

as it eliminated the need for intermediaries, reducing costs and accelerating 

transaction processes [1], [2]. By providing a secure and tamper-proof method 
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for recording transactions, blockchain contributed to increased trust among 

users and stakeholders in the financial ecosystem [3], [4]. The growing influence 

of blockchain in financial markets was evidenced by its applications across 

various financial services, including trade finance, payment systems, and 

investment management. Blockchain technology can potentially revolutionize 

trade finance by streamlining traditionally complex processes, such as handling 

letters of credit, which often involve extensive paperwork and delays [4]. The 

adoption of smart contracts—self-executing contracts with the terms of the 

agreement embedded directly into the code—allowed financial institutions to 

automate these processes, thereby significantly reducing operational risks and 

enhancing overall efficiency [5], [6]. Furthermore, blockchain integration in 

supply chain finance showed promise in mitigating credit risks and improving 

the financial health of small and medium-sized enterprises (SMEs), highlighting 

its capacity to foster more resilient financial frameworks. 

Cryptocurrency trading emerged as a significant aspect of the global financial 

landscape, gaining widespread traction due to its potential for high returns and 

the allure of a rapidly evolving market. Unlike traditional financial assets, 

cryptocurrencies are decentralized digital currencies that operate on blockchain 

technology, which ensures secure and transparent transactions. However, this 

decentralized nature, coupled with a lack of regulation and the influence of 

speculative trading, has contributed to the inherent volatility of cryptocurrency 

markets. This volatility presents unique opportunities for investors to achieve 

substantial gains and poses significant risks, making effective market navigation 

a critical concern [7], [8]. As cryptocurrencies gained recognition as alternative 

investment vehicles, the demand for tools that could provide reliable insights 

into price movements grew, driving the need for sophisticated predictive models 

in this domain. The defining characteristic of cryptocurrencies—extreme price 

volatility—distinguishes them from traditional financial instruments such as 

stocks or bonds. Cryptocurrency prices can fluctuate dramatically within short 

time frames, driven by various factors, including market sentiment, 

technological developments, regulatory news, and macroeconomic trends. This 

unpredictability has challenged traditional statistical models like GARCH, often  

employed for volatility forecasting in financial markets but falling short in 

capturing the complex, time-dependent nature of cryptocurrency price 

movements [8]. As a result, researchers have increasingly turned to advanced  

machine learning and deep learning techniques, such as Long Short-Term 

Memory (LSTM) networks, which are well-suited to recognizing complex 

patterns and temporal dependencies in sequential data, thereby offering a more 

robust approach to cryptocurrency price prediction [9], [10]. 

The Open Network (TON) represented a significant advancement in the 

blockchain ecosystem, primarily designed to improve the scalability and 

usability of decentralized applications (dApps) and services. Originally 

developed as part of the Telegram project, TON sought to address several 

critical limitations encountered by existing blockchain networks, including slow 

transaction speeds, scalability challenges, and suboptimal user experiences. 

TON’s architecture was built on a multi-blockchain structure that allowed for the 

parallel processing of transactions, significantly increasing throughput and 

reducing latency [11]. This innovative approach positioned TON as a potential 

leader in the blockchain space, particularly for applications requiring high 

transaction volumes and rapid processing times, such as financial services and 
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supply chain management. TON's importance in the blockchain ecosystem was 

further highlighted by its unique consensus mechanism known as Proof-of-

Stake (PoS), which enhanced security while promoting energy efficiency 

compared to the more traditional Proof-of-Work (PoW) systems [12]. As 

concerns over the environmental impact of blockchain technology grew, TON's 

PoS mechanism provided a more sustainable alternative by allowing 

participants to validate transactions and create new blocks based on the amount 

of TON they were willing to "stake." This approach minimised energy 

consumption and fostered a more inclusive and participatory network by 

enabling a wider range of participants to engage in the validation process. 

These attributes underscored TON's commitment to technological innovation, 

sustainability, and inclusivity within the blockchain community. 

The TON-IRT trading pair, involving TON and the IRT token, represented a 

significant development in the cryptocurrency market, offering traders and 

investors a unique avenue to diversify their portfolios and capitalize on emerging 

blockchain opportunities. TON, backed by its advanced blockchain 

infrastructure, provided enhanced transaction speed and scalability, making it a 

desirable platform for various dApps and services [11], [12]. The integration of 

IRT, which functioned as a utility token within its ecosystem, amplified the 

potential for innovative financial products and services, catering to the growing 

demand for decentralized finance (DeFi) solutions. The relevance of the TON-

IRT trading pair lies in its capacity to provide liquidity and facilitate transactions 

within the expanding TON ecosystem. As TON continued to grow and attract 

developers and users, the demand for IRT was expected to rise, creating 

lucrative opportunities for traders to benefit from price fluctuations [13]. This 

trading pair enabled investors to engage in speculative trading, leveraging the 

inherent volatility typical of cryptocurrency markets. Trading IRT against TON 

also offered a means to hedge against market fluctuations, allowing traders to 

adjust their positions in response to shifts in market sentiment and the 

performance metrics of both tokens [13], [14]. This dynamic made the TON-IRT 

pair particularly appealing for traders seeking to optimize their strategies in the 

rapidly evolving digital asset landscape. 

Predicting short-term price movements in cryptocurrency markets posed 

significant challenges due to the inherent high volatility and complex market 

dynamics. Cryptocurrencies, including trading pairs like TON-IRT, exhibited 

frequent and dramatic price fluctuations within short time frames, driven by 

various factors such as market sentiment, regulatory news, and macroeconomic 

conditions. This volatility made accurate price prediction particularly difficult, as 

traditional models often struggled to capture the intricate and rapidly changing 

relationships within the data. The unpredictability of these price movements 

introduced substantial risks for traders, making developing robust predictive 

models essential for effective market participation. Accurate intraday price 

prediction was critical for enhancing trading strategies, as it enabled traders to 

make informed decisions and better manage the risks associated with the 

volatile nature of cryptocurrency markets. Reliable predictions could help 

traders optimize entry and exit points, thereby maximizing profits and minimizing 

potential losses. In highly competitive and fast-paced trading environments, 

such as those seen with TON-IRT, accurately forecasting price movements 

provided a strategic advantage. Consequently, improving the precision of short-

term price predictions was a technical challenge and a practical necessity for 
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traders seeking to succeed in the cryptocurrency market. 

The primary goal of this study was to develop a predictive model for short-term 

price movements of TON-IRT using historical hourly data. Given the challenges 

posed by the volatility and complexity of cryptocurrency markets, the study 

aimed to leverage advanced machine learning techniques to enhance 

prediction accuracy and support more effective trading strategies. The study's 

objectives were threefold: First, to explore the application of Long Short-Term 

Memory (LSTM) Neural Networks in predicting TON-IRT prices. LSTM networks 

were chosen due to their proven ability to model temporal dependencies and 

handle the non-linear relationships often present in financial time series data. 

Second, the study aimed to evaluate the performance of the LSTM model using 

various metrics, such as Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), and Mean Absolute Percentage Error (MAPE), to ensure the 

robustness and reliability of the predictions. Finally, the study sought to compare 

the LSTM model's performance against traditional forecasting methods to 

demonstrate its effectiveness in the context of TON-IRT price prediction. 

This study contributed to the field of blockchain analytics by providing a novel 

approach to short-term price prediction in cryptocurrency markets, specifically 

focusing on the TON-IRT trading pair. By employing LSTM Neural Networks, 

the study addressed the limitations of traditional forecasting models and 

highlighted the potential of deep learning techniques in capturing the complex 

dynamics of cryptocurrency prices. The insights gained from this research could 

pave the way for more sophisticated predictive models that better accommodate 

the unique characteristics of blockchain-based financial assets. The potential 

implications of this study extended beyond academic contributions to include 

practical benefits for traders and the broader financial market. For traders, the 

enhanced predictive accuracy offered by the LSTM model could lead to more 

informed trading decisions, improved risk management, and increased 

profitability. Moreover, the study's findings underscored the importance of 

integrating advanced analytics into trading strategies, which could drive further 

innovation in developing algorithmic trading tools. For the broader financial 

market, the successful application of LSTM networks in cryptocurrency price 

prediction demonstrated the growing relevance of machine learning in financial 

analytics, encouraging the adoption of similar approaches in other areas of 

financial forecasting and decision-making. 

Literature Review 

Blockchain and Cryptocurrency Trading 

Blockchain technology has undergone significant evolution since its inception. 

It has fundamentally transformed various sectors by providing decentralized, 

secure, and transparent systems for data management and transactions. The 

history of blockchain can be divided into three primary generations, each 

characterized by distinct technological advancements and applications that 

expanded its utility and scope. The first generation of blockchain, commonly 

referred to as Blockchain 1.0, emerged with the introduction of Bitcoin in 2008 

by an individual or group known as Satoshi Nakamoto. This initial iteration 

focused primarily on enabling peer-to-peer transactions without the need for 

intermediaries, thereby revolutionizing the concept of digital currency [15]. 

Bitcoin's underlying technology utilized a decentralized ledger system that 
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recorded transactions securely and imminently, ensuring transparency and 

integrity in financial exchanges. This approach provided the foundational 

framework for subsequent developments in the blockchain space, as it 

demonstrated the feasibility of decentralized systems operating on a global 

scale without reliance on centralized authorities [16]. As blockchain technology 

matured, the second generation, or Blockchain 2.0, began to take shape with 

the introduction of platforms like Ethereum in 2015. Ethereum expanded the 

capabilities of blockchain beyond simple monetary transactions by incorporating 

smart contracts—self-executing contracts where the agreement terms were 

directly written into code [15]. This innovation enabled the creation dApps that 

could function autonomously on the blockchain, significantly broadening the 

scope of blockchain’s applications across various industries, including finance, 

supply chain management, and healthcare. The emergence of decentralized 

finance (DeFi) and non-fungible tokens (NFTs) during this period underscored 

the versatility and expansive potential of blockchain technology, as these 

innovations disrupted traditional business models and introduced new avenues 

for value creation. The evolution of blockchain continued into the third 

generation, known as Blockchain 3.0, which aimed to address the limitations of 

earlier generations, such as scalability, transaction speed, and energy 

consumption. This phase enhanced scalability, interoperability, and user 

experience across various blockchain networks [17]. Innovations in this 

generation included the development of more efficient consensus mechanisms, 

such as Proof-of-Stake (PoS) and delegated Proof-of-Stake (dPoS), as well as 

solutions for cross-chain interoperability that allowed different blockchains to 

communicate and transact with one another (Wang et al., 2019). These 

advancements were geared towards integrating blockchain technology into 

traditional sectors, including government services, healthcare, and energy 

management, thereby promoting broader adoption and practical applications 

beyond the confines of cryptocurrency [17]. 

Volatility stood out as one of the most defining characteristics of cryptocurrency 

markets. Unlike traditional assets, Cryptocurrencies were known for their 

dramatic price fluctuations, often occurring within very short time frames. For 

instance, major cryptocurrencies like Bitcoin frequently experienced swings of 

50% or more in a single year, while lesser-known cryptocurrencies could exhibit 

even greater levels of volatility [18], [19]. This high volatility could be attributed 

to various factors, including shifts in market sentiment, regulatory news, and 

broader macroeconomic conditions. Research indicated that there was a 

positive correlation between trading volume and price volatility, suggesting that 

increased trading activity often led to more pronounced price movements [20], 

[21]. While this volatility presented significant opportunities for investors to 

achieve substantial gains, it also posed considerable risks, as rapid price 

changes could just as easily result in substantial losses. A complex interplay of 

factors, including liquidity, market sentiment, and the distinctive characteristics 

of various digital assets, influenced the trading dynamics within cryptocurrency 

markets. Liquidity, or the ease with which an asset could be bought or sold 

without affecting its price, played a critical role in determining price stability and 

trading efficiency. Illiquid cryptocurrencies often exhibit higher price delays and 

market inefficiencies than their more liquid counterparts, making them more 

susceptible to price manipulation [22]. Additionally, market sentiment was a 

powerful driver of trading behavior, with news events and social media activity 
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frequently causing rapid price shifts. For instance, high-profile announcements 

from influential figures in the cryptocurrency space could lead to immediate 

spikes or declines in asset values [23], [24]. Furthermore, the rise of 

decentralized finance (DeFi) platforms introduced new dynamics into the 

market, enabling users to participate in activities such as lending, borrowing, 

and yield farming, adding complexity layers to the trading landscape [22]. 

Price Prediction in Financial Markets 

Traditional methods such as ARIMA (AutoRegressive Integrated Moving 

Average) and linear regression have been extensively employed in financial 

modeling and forecasting. These models have been valuable tools in predicting 

price movements in traditional financial markets, where data often exhibit more 

predictable patterns and relatively stable relationships between variables. 

However, their application in cryptocurrency markets revealed significant 

limitations due to their unique characteristics, particularly their high volatility, 

non-stationarity, and complex dynamics of trading behavior. One of the primary 

challenges traditional models like ARIMA faced in cryptocurrency markets was 

their assumption of data stationarity. Cryptocurrency prices are notoriously 

volatile, with fluctuations that frequently exceed those observed in traditional 

asset classes. This volatility, coupled with the non-stationary nature of 

cryptocurrency time series data, posed a significant challenge for ARIMA 

models, which require stationary input data to produce reliable forecasts [25]. 

The presence of non-stationary data often led to unreliable and spurious results 

when using these models, as they failed to account for the ever-changing 

underlying market conditions. Moreover, standard correlation methods 

employed in traditional econometric models, such as those based on Pearson 

correlation, also required stationarity and could, therefore, misrepresent the true 

relationships between variables in the context of cryptocurrency trading [25]. 

Consequently, traditional models often fell short of accurately capturing the true 

dynamics of price movements in these highly volatile markets. 

Machine learning and deep learning techniques gained significant traction in the 

field of cryptocurrency price prediction, offering advanced methodologies that 

addressed the complexities and unique characteristics of cryptocurrency 

markets. These techniques leveraged large datasets and sophisticated 

algorithms to identify patterns and make predictions, thus providing traders and 

investors with valuable insights. Unlike traditional econometric models, ML and 

DL approaches could handle non-linear relationships and adapt to the high 

volatility and dynamic nature of cryptocurrency prices. Machine learning 

encompassed a variety of algorithms that learned from data and improved their 

performance over time. Traditional ML methods, such as decision trees, support 

vector machines (SVM), and random forests, were applied to predict 

cryptocurrency prices by analyzing historical price data and identifying 

correlations with various market indicators. For instance, researchers 

highlighted the versatility of machine learning in managing cryptocurrency 

portfolios and predicting price fluctuations, demonstrating its effectiveness in 

real-world decision-making scenarios [26]. Additionally, ML-based non-

parametric methods became increasingly popular for analyzing financial time 

series, including cryptocurrencies, due to their ability to capture complex, non-

linear relationships in the data [8]. These capabilities made machine learning a 

valuable tool for price prediction in volatile and rapidly changing markets. 
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Long Short-Term Memory (LSTM) Networks 

LSTM networks were a specialized type of recurrent neural network (RNN) 

specifically designed to effectively learn from sequential data, making them 

particularly suitable for time series prediction tasks. Unlike traditional RNNs, 

which struggled with long-term dependencies due to issues such as vanishing 

and exploding gradients, LSTMs addressed these limitations through their 

unique architecture. This allowed LSTMs to maintain and manage information 

over extended sequences, making them adept at capturing temporal 

dependencies in data. LSTM networks were engineered with memory cells and 

a set of gating mechanisms—including input, forget, and output gates—that 

regulated the flow of information through the network, enabling them to 

selectively retain or discard information as needed at each time step. This 

capability was critical for tasks requiring the recognition of patterns over long 

sequences, such as financial time series forecasting. The memory cells in LSTM 

networks functioned to retain relevant information over extended periods, which 

was crucial for accurate time series prediction. The input gate determined which 

information was added to the cell state, the forget gate controlled which 

information was discarded, and the output gate decided what information from 

the cell state was used to generate the output at each step. This configuration 

allowed LSTMs to maintain a flow of relevant information while mitigating the 

impact of less important data, thereby effectively capturing long-term 

correlations in sequential data [27]. The architecture's ability to manage long-

term dependencies made LSTMs particularly effective in time series prediction, 

as they could learn the significance of past events on future outcomes without 

being hindered by the limitations that affected traditional RNNs. Moreover, the 

versatility of LSTM networks extends across various domains, including finance, 

healthcare, and environmental science. For instance, LSTM models were 

successfully applied to predict cardiovascular health trajectories from electronic 

health records, showcasing their adaptability to different sequential data types 

[28]. Similarly, LSTMs were employed in predicting water quality parameters 

and atmospheric conditions, further demonstrating their broad applicability and 

effectiveness in handling a wide range of time series prediction tasks [29], [30]. 

This wide applicability made LSTMs valuable in diverse fields, enhancing their 

role in predictive modeling. 

Previous Studies on Price Prediction Using LSTM 

The application of Long Short-Term Memory (LSTM) networks in financial and 

cryptocurrency markets garnered significant attention due to their capability to 

model complex temporal dependencies in time series data. Various studies 

explored the effectiveness of LSTM in predicting cryptocurrency prices, yielding 

promising results and valuable insights into its potential for enhancing trading 

strategies. Research [31] studied the top three cryptocurrencies, utilizing LSTM 

for price forecasting. The results indicated a Mean Absolute Percentage Error 

(MAPE) of approximately 1.47%, demonstrating the model’s effectiveness in 

capturing price trends. The study specifically highlighted the performance of 

LSTM in predicting the price of Dogecoin (DOGE), achieving a Root Mean 

Square Error (RMSE) of 0.0630, which underscored the model’s precision in 

volatile markets [31]. Similarly, [32] focused on the volatility of cryptocurrency 

prices and assessed LSTM's predictive capabilities, confirming that LSTM was 

suitable for forecasting volatile cryptocurrency prices. Their research provided 
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insights into future price movements and emphasized the model’s adaptability 

to rapid changes in market conditions, which was crucial for effective trading 

strategies. 

Research [33] compared various machine learning and deep learning 

algorithms, including LSTM and Bi-LSTM, in forecasting Bitcoin prices. The 

findings suggested that deep learning models, particularly LSTM, outperformed 

traditional methods, highlighting their potential in algorithmic trading strategies. 

This study reinforced the notion that LSTM could effectively capture the 

nonlinear patterns inherent in cryptocurrency price movements, making it a 

valuable tool for traders seeking to navigate the complexities of these markets 

[33]. In another study, [34] applied LSTM with time-varying parameters to 

predict cryptocurrency prices, finding that LSTM’s ability to adapt to changing 

market conditions significantly enhanced forecasting accuracy. Their research 

emphasized the importance of feature extraction in improving the performance 

of LSTM models in cryptocurrency predictions [34]. Further highlighting the 

effectiveness of LSTM, [35] conducted a comparative study between LSTM and 

traditional statistical models, such as ARIMA, for forecasting cryptocurrency 

price trends. The study concluded that LSTM provided more reliable forecasts 

than traditional models, reinforcing its suitability for the dynamic nature of 

cryptocurrency markets [35]. Another study by [36] explored the relationship 

between social media sentiment and cryptocurrency prices using LSTM, finding 

that incorporating sentiment analysis significantly improved prediction accuracy. 

This demonstrated the model’s versatility in integrating external factors affecting 

market behavior, further enhancing its utility in price prediction [36]. 

Method 

The research method for this study consists of several steps to ensure a 

comprehensive and accurate analysis. The flowchart in figure 1 outlines the 

detailed steps of the research method. 

 

Figure 1 Research Method Flowchart 

Data Description 

The dataset used in this study consisted of hourly trading data for the TON–IRT 

pair, capturing key trading metrics essential for developing the predictive model. 

The dataset included the following columns: Epoch timestamp, DateTime, 

Volume, Open, High, Low, and Close prices. 

The Epoch timestamp provided a numerical representation of the date and time 
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for each observation, while the DateTime column offered a human-readable 

format for easier interpretation. The Volume column recorded the total amount 

of TON traded against IRT during each hour, representing market activity. The 

Open, High, Low, and Close columns represented the hourly price data—

specifically, the opening price, the highest and lowest prices within the hour, 

and the closing price. Collectively, these features offered a comprehensive view 

of the hourly trading behavior, forming the foundation for subsequent time series 

analysis and predictive modeling. 

The data was obtained from a reputable cryptocurrency exchange, ensuring the 

reliability and integrity of the trading records. However, as with most real-world 

financial datasets, preprocessing was required to prepare the data for analysis 

and to meet the input requirements of the LSTM neural network. 

An initial inspection was performed to identify missing or inconsistent values, as 

these could disrupt the continuity of the time series and degrade model 

performance. Missing values, if detected, were handled using forward-fill or 

backward-fill techniques, depending on the context. This method preserved the 

temporal sequence of the dataset without introducing bias, ensuring that the 

time series remained continuous and suitable for sequential learning. 

The DateTime column was then reformatted into a standardized datetime 

structure and set as the index of the DataFrame. This conversion enabled 

efficient manipulation and chronological alignment of data points—an essential 

step for time series forecasting models such as LSTM, which depend on 

preserving temporal dependencies between observations. 

Finally, all numerical features were normalized to a common scale, typically 

between 0 and 1, using Min–Max scaling. This normalization stabilized the 

neural network training process by preventing features with larger numerical 

ranges from dominating the learning process. The transformation was 

performed using Equation (1): 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1) 

The Volume, Open, High, Low, and Close features were normalized using this 

method, ensuring consistent scaling across variables. This preprocessing 

pipeline produced a clean, standardized, and well-structured dataset optimized 

for LSTM model input, providing the foundation for accurate and robust short-

term price prediction of the TON–IRT trading pair. 

 Exploratory Data Analysis (EDA) 

The objective of the EDA was to gain initial insights into the dataset and 

understand the distributions and relationships among the variables. This step 

was crucial for identifying underlying patterns, detecting anomalies, and 

informing the subsequent modeling process. The EDA provided a foundation 

for understanding the characteristics of the TON-IRT hourly trading data, 

helping to align the predictive model’s design with the nuances of the dataset. 

Several visualization techniques were employed to explore the data. Line plots 

in figure 2 of the Open, High, Low, and Close prices over time were generated 

to visualize the price trends and fluctuations within the dataset. These plots 

revealed the volatility and overall trends in the TON-IRT trading pair, highlighting 
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periods of rapid price changes and more stable phases. This visualization was 

instrumental in identifying key moments of price movement, such as spikes and 

drops, which were critical for understanding the timing and magnitude of 

changes in the market. By examining these time series plots, it was possible to 

observe the cyclical nature of price movements, which informed the need for a 

model capable of capturing such temporal dependencies. 

 

Figure 2 Open, High, Low, Close Prices Over Time 

Volume analysis was also conducted to identify trading activity patterns, shown 

in figure 3. A line plot of the trading volume over time was used to visualize 

periods of high and low market activity. This analysis helped identify correlations 

between trading volume and price movements, as spikes in volume often 

coincided with significant price changes, suggesting that volume could be a 

valuable predictor of market behavior. Understanding these patterns was 

essential for developing the predictive model, as it highlighted the importance 

of including volume as a key feature. Additionally, volume analysis provided 

insights into liquidity conditions and potential periods of heightened market 

interest, which could impact the reliability of price predictions. 

 

Figure 3 Volume Over Time 

A correlation matrix heatmap was used to explore the relationships between the 

various numerical variables in the dataset, including Volume, Open, High, Low, 

and Close prices, shown in figure 4. The heatmap visually represented the 

strength and direction of the linear relationships between these variables, with 

color gradients indicating the degree of correlation. This analysis revealed 

strong positive correlations among the price variables (Open, High, Low, and 

Close), which was expected given their interconnected nature within each 

trading hour. The correlation between Volume and price variables was also 



Journal of Digital Market and Digital Currency 

 

Stephanus and Mbitu (2025) J. Digit. Mark. Digit. Curr. 

 

353 

 

 

examined to assess whether trading activity had a significant relationship with 

price movements. The insights gained from the correlation matrix helped refine 

the feature selection process for the LSTM model, ensuring that the most 

relevant variables were considered for prediction. 

 

Figure 4 Correlation Matrix of Trading Variables 

Feature Engineering 

Feature engineering represented a critical stage in developing the predictive 

model, as it involved constructing new variables that enhanced the model’s 

capacity to learn from the data and generate accurate forecasts. For the LSTM 

(Long Short-Term Memory) neural network, which relies on sequential data to 

capture temporal dependencies, this process focused on generating lagged 

features, moving averages, and technical indicators that could provide deeper 

insights into the short-term price dynamics of the TON–IRT trading pair. 

Lagged features were introduced to incorporate historical information into the 

model, allowing it to learn how past price behaviors influence future market 

movements. These features included prior values of the target variables — 

Open, High, Low, Close, and Volume — over a defined number of time steps. 

By integrating lagged variables, the model could effectively recognize temporal 

dependencies, which are essential in time series forecasting. Several lag 

intervals were evaluated to identify the optimal sequence length that maximized 

predictive performance. This ensured the LSTM model could learn meaningful 

relationships between successive time steps, a fundamental requirement for 

accurate time-dependent predictions. 

To smooth short-term fluctuations and emphasize longer-term trends, moving 

averages were computed and incorporated as additional features. Both Simple 

Moving Average (SMA) and Exponential Moving Average (EMA) were 

calculated for different time windows (e.g., 5, 10, and 20 hours), enabling the 

model to capture varying trend durations. The SMA and EMA were defined as 

follows: 
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𝑆𝑀𝐴𝑡 =
1

𝑛
∑𝑃𝑡−𝑖

𝑛−1

𝑖=0

 (2) 

𝐸𝑀𝐴𝑡 = (𝑃𝑡 ×
2

𝑛 + 1
) + 𝐸𝑀𝐴𝑡−1 × (1 −

2

𝑛 + 1
) 

(3) 

Here, 𝑃𝑡represents the asset price at time 𝑡, and 𝑛denotes the chosen window 

size. 

Moving averages helped filter out market noise, highlight overall price direction, 

and stabilize the learning process in volatile market conditions. Including these 

smoothed trend indicators improved the model’s ability to distinguish between 

random price fluctuations and meaningful market shifts. 

Beyond lagged and average-based features, technical indicators were 

computed to capture momentum, volatility, and potential market reversal 

signals. Two widely used indicators were included: the Relative Strength Index 

(RSI) and the Moving Average Convergence Divergence (MACD). 

The RSI measures momentum and helps identify overbought or oversold 

conditions, signaling possible price reversals. It was calculated as: 

𝑅𝑆𝐼 = 100 −
100

1 +
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑎𝑖𝑛
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑠𝑠

 
(4) 

The MACD measures trend strength and direction by evaluating the difference 

between two exponential moving averages, typically over 12 and 26 periods: 

𝑀𝐴𝐶𝐷 = 𝐸𝑀𝐴12 − 𝐸𝑀𝐴26 (5) 

Together, these indicators provided valuable contextual information about 

market sentiment and momentum that was not directly visible from raw price 

data. 

The final feature set combined lagged variables, moving averages, and 

technical indicators (RSI and MACD), all of which were normalized using Min–

Max scaling to ensure consistent input magnitudes. This comprehensive set of 

features allowed the LSTM model to learn complex temporal relationships and 

market dynamics effectively. By integrating both statistical and technical 

aspects of the market, the engineered features significantly enhanced the 

model’s ability to generate robust and precise short-term price forecasts for the 

TON–IRT trading pair — aligning with the study’s objective of developing a 

reliable, data-driven predictive tool for cryptocurrency traders and investors. 

Model Development 

The development of the LSTM model for predicting short-term price movements 

of the TON-IRT trading pair involved designing an architecture tailored to 

capture the temporal dependencies and complex patterns inherent in time 

series data. The model architecture consisted of several key components, 

including the input layer, hidden LSTM layers, and the output layer, each 

contributing to the overall predictive capability of the model. 
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The input layer was designed to receive the sequential data generated from the 

feature engineering process, which included lagged features, moving averages, 

and various technical indicators. Each input sequence represented a fixed 

number of past time steps, allowing the model to learn from historical data to 

predict future prices. The hidden layers were composed of multiple LSTM units, 

each containing memory cells and gating mechanisms—specifically, the input, 

forget, and output gates—that controlled the flow of information through the 

network. This configuration enabled the LSTM layers to retain relevant 

information over extended sequences and effectively manage temporal 

dependencies, which were crucial for accurate time series prediction. The 

model architecture included two stacked LSTM layers, which enhanced the 

model’s depth and capacity to learn complex sequential patterns. A dropout 

layer followed these layers to prevent overfitting by randomly omitting a fraction 

of the LSTM units during training, thereby improving the model's generalizability 

to unseen data. 

The output layer was a fully connected dense layer with a single neuron, 

corresponding to the predicted price for the next time step. This layer used a 

linear activation function appropriate for regression tasks involving continuous 

output values such as price predictions. The overall architecture was designed 

to balance complexity and performance, ensuring that the model was sufficiently 

robust to capture the nuances of the data while avoiding excessive 

computational overhead. 

Hyperparameter tuning was a critical aspect of the model development process, 

aimed at optimizing the model’s performance by adjusting key parameters. The 

tuning process involved experimenting with various configurations of the 

learning rate, the number of LSTM layers, units within each layer, batch size, 

and epochs. The learning rate, which determined the step size at each iteration 

while moving toward a minimum of the loss function, was fine-tuned to ensure 

that the model converged efficiently without overshooting. A grid search 

approach was employed to systematically evaluate different combinations of 

hyperparameters, allowing for the identification of the optimal settings that 

minimized the prediction error. 

The number of LSTM units in each layer was also tuned, with initial tests 

conducted using 50, 100, and 150 units to assess the impact on model 

accuracy. It was found that 100 units per LSTM layer provided the best balance 

between computational efficiency and predictive performance. Additionally, the 

batch size, which influenced how many training samples the model processed 

before updating the weights, was optimized by testing sizes of 16, 32, and 64. 

The model performed optimally with a batch size of 32, providing a good trade-

off between training speed and stability. The final model was trained for 100 

epochs, with early stopping implemented to prevent overfitting by halting the 

training process when the validation loss ceased to improve.  

These tuning efforts ensured that the LSTM model was finely calibrated to the 

specific characteristics of the TON-IRT dataset, enhancing its ability to make 

accurate short-term price predictions. The iterative process of refining the model 

architecture and hyperparameters was essential in developing a robust 

predictive tool that could provide valuable insights for traders and investors 

operating in the highly volatile cryptocurrency market. The LSTM model 

development process can be summarized in algorithm. 
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Algorithm 1. LSTM Model Training Process 

Given: 

Dataset 𝐷 = {(𝑥𝑡 , 𝑦𝑡)}𝑡=1
𝑁 , learning rate 𝜂, sequence length 𝑇, batch size 𝐵, and 

maximum epochs 𝐸. 

1. Preprocessing: 

 Normalize input features using Min–Max scaling: 

  𝑥′ =
𝑥−𝑥min

𝑥max−𝑥min
  

2. Sequence Generation: 

 Create input–output pairs 

  𝑋𝑖 = [𝑥𝑖−𝑇+1, … , 𝑥𝑖], 𝑌𝑖 = 𝑦𝑖+1  

3. Initialize Model Parameters: 

 Randomly initialize 𝑊𝑓 ,𝑊𝑖 ,𝑊𝐶 ,𝑊𝑜,𝑊𝑦and 𝑏𝑓 , 𝑏𝑖 , 𝑏𝐶 , 𝑏𝑜, 𝑏𝑦 

4. For each epoch 𝑒 = 1,2, … , 𝐸: 

For each batch (𝑋𝑏 , 𝑌𝑏) ⊂ 𝐷: 

a. Compute LSTM forward pass using Equations (6–11) 

b. Compute prediction 𝑌̂𝑏using Equation (12) 

c. Calculate loss function (Mean Squared Error): 

𝐿 =
1

𝐵
∑(𝑌𝑗 − 𝑌̂𝑗)

2

𝐵

𝑗=1

 

d. Backpropagate error through time (BPTT) 

e. Update parameters using gradient descent: 

𝜃 ← 𝜃 − 𝜂
∂𝐿

∂𝜃
 

Validation: 

 After each epoch, compute validation loss. 

 If validation loss does not improve for 𝑝consecutive epochs → early stop. 

5. Output: 

 Return optimized parameters 𝜃∗and final trained model 𝑀∗. 

Model Training and Validation 

The training and validation of the LSTM model involved a systematic approach 

to ensure that the model was both accurate and generalizable to new data. The 

process began with splitting the dataset into three distinct sets: training, 

validation, and test sets. This division was critical for evaluating the model’s 

performance and its ability to generalize beyond the data it was trained on. The 

dataset was divided with a typical split of 70% for training, 15% for validation, 

and 15% for testing. The training set was used to fit the model and learn the 

underlying patterns of the data, the validation set was employed to tune the 

model's hyperparameters and prevent overfitting, and the test set served as an 

independent evaluation of the model's predictive capabilities. 

The splitting process maintained the temporal order of the data, which was 

essential for time series analysis, ensuring that future data points were not used 

to predict past events. This approach respected the sequential nature of the 

data and preserved the real-world scenario of forecasting future prices based 

on past information. The training process involved feeding the LSTM model with 

sequences of historical data, allowing it to learn the relationships between past 
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and future prices. During training, the model's performance was continuously 

monitored on the validation set. Adjusted to hyperparameters to minimize the 

validation loss, thus enhancing the model’s ability to generalize to unseen data. 

To further ensure the robustness of the model, cross-validation techniques were 

employed. Given the sequential nature of time series data, traditional k-fold 

cross-validation was unsuitable, as it would violate the temporal order. Instead, 

a time series cross-validation approach, also known as rolling-origin cross-

validation, was used. This method involved repeatedly training the model on 

progressively larger training sets while validating on subsequent time periods. 

Each fold in this cross-validation technique consisted of a training set that was 

expanded incrementally with each iteration, followed by validation on the next 

time period not yet included in the training set. 

This approach allowed the model to be tested on various time segments of the 

data, providing a comprehensive evaluation of its performance across different 

market conditions. The time series cross-validation helped identify potential 

overfitting issues and ensured that the model maintained high predictive 

accuracy across various dataset segments. By validating the model’s 

performance at multiple time points, this method provided a robust assessment 

of the LSTM model’s ability to predict short-term price movements reliably. 

The combination of a strategic data split and the use of time series cross-

validation ensured that the LSTM model was well-trained and thoroughly 

validated. These steps were essential in developing a predictive model that 

could offer accurate and dependable forecasts in the dynamic and volatile 

context of cryptocurrency trading. The rigorous training and validation process 

underscored the model's readiness for deployment in real-world trading 

scenarios, where robust performance under varying market conditions was 

crucial. 

Evaluation Metrics 

The evaluation of the LSTM model's performance was conducted using a set of 

widely recognized metrics: MAE, RMSE, and R². These metrics provided a 

comprehensive assessment of the model’s predictive accuracy and its ability to 

generalize to unseen data. Each metric offered a distinct perspective on the 

model's performance, allowing for a detailed understanding of how well the 

LSTM captured the patterns in the time series data and how accurately it 

predicted the short-term price movements of the TON-IRT trading pair. 

MAE was used as a primary evaluation metric due to its straightforward 

interpretation and robustness in assessing average model prediction errors. 

MAE measures the average magnitude of the errors between the predicted and 

actual values without considering their direction. It was calculated as the mean 

of the absolute differences between the predicted and actual prices in the test 

set. A lower MAE value indicated that the model’s predictions were close to the 

actual values, highlighting its accuracy. MAE was particularly useful in 

understanding the overall prediction performance because it treated all errors 

equally and provided a direct measure of average deviation. 

RMSE was another critical metric used to evaluate the model’s performance. 

RMSE measures the square root of the average squared differences between 

the predicted and actual values. This metric placed a higher penalty on larger 
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errors, making it more sensitive to outliers compared to MAE. RMSE was 

chosen to provide insight into the variance of the prediction errors and to 

emphasize the importance of minimizing larger deviations in the model's 

predictions. A lower RMSE indicated that the model was accurate on average 

and consistent, with fewer large prediction errors. The use of RMSE 

complemented MAE by highlighting the impact of significant deviations, which 

was critical in the volatile context of cryptocurrency trading. 

R², also known as the coefficient of determination, was employed to assess how 

well the model’s predictions matched the actual price movements in terms of 

variance explanation. R² measures the proportion of the variance in the 

dependent variable that is predictable from the independent variables, providing 

a statistical measure of how close the data were to the fitted regression line. An 

R² value closer to 1 indicated that the model explained a significant portion of 

the variance in the actual prices, reflecting a strong fit. This metric was essential 

for evaluating the overall explanatory power of the LSTM model and for 

understanding how well it captured the underlying trends in the data. 

Together, these metrics—MAE, RMSE, and R-squared—provided a 

comprehensive evaluation of the LSTM model’s performance in predicting 

short-term price movements of the TON-IRT trading pair. MAE and RMSE 

offered insights into the magnitude and consistency of prediction errors, while 

R-squared assessed the model's ability to explain the variance in the data. By 

employing these metrics, the study ensured a robust evaluation framework that 

quantified prediction accuracy and highlighted areas where the model excelled 

or required further refinement. This thorough evaluation approach was crucial 

in validating the effectiveness of the LSTM neural network for use in real-world 

trading analytics within the highly dynamic and volatile cryptocurrency markets. 

Result and Discussion 

Model Performance 

The performance of the LSTM model was evaluated using key metrics, including 

MAE, RMSE, and R². The results indicated that the LSTM model achieved an 

MAE of 0.0274, which suggests that the model's average prediction error was 

approximately 2.74% of the scaled range of the target variable. This relatively 

low MAE demonstrates the model’s capability to produce predictions that are 

closely aligned with the actual values. The RMSE was calculated to be 0.0321, 

highlighting that the typical prediction error was small and similar in magnitude 

to the MAE, indicating a consistent performance across all data points without 

significant outliers. 

The R-squared value of 0.8743 revealed that the LSTM model successfully 

captured 87.43% of the variance in the actual prices, underscoring its 

effectiveness in predicting the short-term price movements of the TON-IRT 

trading pair. This high R-squared value suggested that the model was well-

suited for capturing the inherent patterns within the data, although the residuals 

and further visual analysis indicated some areas for potential improvement, 

particularly in terms of prediction lag and amplitude accuracy. 

Visualization played a critical role in further assessing the model’s performance 

(see figure 5). A line plot comparing the actual versus predicted prices 

demonstrated that the LSTM model could follow the general trend of the price 
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movements, with the predicted prices (red line) closely tracking the actual prices 

(blue line). However, the plot also revealed a consistent lag in the model's 

predictions, especially at points where the actual prices exhibited rapid 

changes. This lag suggests that while the model effectively learned the overall 

direction of price movements, it occasionally failed to adjust promptly to sudden 

shifts in the market. 

 

Figure 5 Actual vs Predicted Prices 

Error analysis through residual plots (figure 6) provided additional insights into 

the model’s performance. The residual plot displayed the differences between 

the actual and predicted prices over time, revealing a positive bias as most 

residuals were above zero. This indicates that the model tended to 

underestimate the actual prices, particularly during periods of increased 

volatility or when prices trended upwards. Additionally, the residuals showed a 

pattern of increasing magnitude over time, suggesting that the model's 

predictions became less accurate as time progressed. The presence of 

heteroscedasticity, indicated by the growing spread of residuals, highlighted 

that the variance of prediction errors was not constant, potentially due to 

evolving market dynamics that the model struggled to adapt to. 



Journal of Digital Market and Digital Currency 

 

Stephanus and Mbitu (2025) J. Digit. Mark. Digit. Curr. 

 

360 

 

 

 

Figure 6 Residual Plot 

Comparative Analysis 

To evaluate the effectiveness of the LSTM model in predicting short-term price 

movements of the TON-IRT trading pair, a comparative analysis was conducted 

against traditional baseline models, including Linear Regression and ARIMA. 

These baseline models were selected due to their widespread use in time series 

forecasting and financial market analysis. The Linear Regression model, which 

assumes a linear relationship between the input features and the target variable, 

and the ARIMA model, known for capturing temporal dependencies in time 

series data, provided benchmarks for assessing the LSTM model’s 

performance. 

The Linear Regression model yielded a Mean Absolute Error (MAE) of 0.0845 

and a Root Mean Squared Error (RMSE) of 0.0912, with an R-squared (R²) 

value of 0.453. These results indicated that the Linear Regression model was 

limited in its ability to capture the non-linear and complex patterns inherent in 

cryptocurrency price movements. Similarly, the ARIMA model, which performed 

slightly better than Linear Regression, achieved an MAE of 0.0718, an RMSE 

of 0.0795, and an R² value of 0.527. Although ARIMA managed to capture some 

temporal patterns, its performance was still significantly lower than that of the 

LSTM model, particularly in periods of high volatility and rapid price changes. 

The LSTM model outperformed both baseline models across all evaluation 

metrics. With an MAE of 0.0274, an RMSE of 0.0321, and an R² value of 0.8743, 

the LSTM demonstrated a superior ability to learn from sequential data and 

capture complex, non-linear relationships within the time series. The substantial 

improvement in R² compared to Linear Regression and ARIMA highlighted the 

LSTM’s capacity to account for a much larger portion of the variance in the price 

data. This result underscores the importance of using models capable of 

capturing long-term dependencies and intricate patterns, which are prevalent in 

financial time series data like cryptocurrency prices. 

To contextualize the LSTM model’s performance, it was benchmarked against 

Linear Regression and ARIMA models, which serve as common baselines in 

time series forecasting. The comparison focused on the same evaluation 
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metrics to ensure consistency and comparability. As shown in table 1, the LSTM 

model significantly outperformed both traditional approaches. 

Table 1 Comparative Performance of Forecasting Models 

Model MAE RMSE R² Remarks 

Linear Regression 0.0845 0.0912 0.453 
Performs poorly due to linear assumptions; fails to capture 

non-linear relationships in volatile data. 

ARIMA (AutoRegressive Integrated 

Moving Average) 
0.0718 0.0795 0.527 

Captures some temporal patterns but limited under high 

volatility conditions. 

LSTM (Proposed Model) 0.0274 0.0321 0.8743 
Outperforms baselines across all metrics, effectively 

modeling non-linear sequential dependencies. 

It achieved a 67.6% lower MAE than Linear Regression and a 61.8% lower MAE 

than ARIMA. Moreover, the LSTM’s R² value (0.8743) was nearly double that 

of ARIMA, indicating a superior ability to capture the true dynamics of the 

market. The superior performance of the LSTM model can be attributed to its 

recurrent architecture, specifically designed to handle data sequences by 

maintaining information over time steps. Unlike Linear Regression, which 

oversimplifies the data with a straight-line approach, or ARIMA, which relies 

heavily on past observations without the ability to recognize more complex 

patterns, LSTM networks utilize gates and memory cells to selectively 

remember or forget information. This mechanism allows LSTMs to adapt to the 

nuanced behavior of financial markets, where past price movements, trends, 

and even subtle fluctuations can significantly impact future predictions. 

Discussion 

The results of this study demonstrate that the LSTM model effectively captured 

the short-term price dynamics of the TON–IRT trading pair, providing valuable 

insights into cryptocurrency market behavior. The model’s ability to closely align 

predicted prices with actual values indicates that it successfully learned the 

temporal dependencies and non-linear relationships inherent in financial time 

series data. This performance underscores the model’s potential as a predictive 

tool for enhancing short-term trading strategies. 

The LSTM model exhibited strong accuracy, as evidenced by its low MAE and 

RMSE values, along with a high R² score of 0.8743. These metrics confirm that 

the model was capable of explaining a substantial proportion of the variance in 

the price data, producing predictions that closely followed the observed market 

trends. For traders and analysts, this suggests that LSTM-based forecasting 

can support informed decision-making processes, particularly in strategies that 

depend on recognizing short-term trends and reversals. The model’s reliable 

trend-following capability makes it suitable for momentum-based trading 

approaches, where timing entries and exits is crucial to maximizing profitability. 

However, visual and residual analyses revealed several notable patterns that 

provide deeper insight into the model’s performance characteristics. A 

consistent observation was the presence of a time lag in the model’s responses 

to abrupt price changes. While the LSTM effectively followed established trends, 

it occasionally struggled to immediately adapt to rapid market fluctuations, such 

as those driven by high-volume trades or news-induced volatility. This lag 

highlights a common limitation in recurrent neural networks, where the model 

prioritizes long-term temporal dependencies but reacts more slowly to sudden 

shifts. In real-world trading scenarios, this delay could translate into missed 

opportunities or suboptimal execution timing, particularly in high-frequency or 
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volatility-driven environments. 

Another critical observation was the underestimation of price peaks, as 

indicated by the positive bias in residuals. This suggests that the model was 

slightly conservative in forecasting upward movements, potentially due to its 

exposure to a training dataset where extreme fluctuations were relatively rare. 

Such conservatism, while reducing overprediction risk, may limit the model’s 

effectiveness during bullish market phases characterized by sharp upward price 

surges. Additionally, residual magnitudes tended to increase over time, 

suggesting mild heteroscedasticity in the model’s errors. This pattern indicates 

that the model’s predictive accuracy diminished as it progressed through the 

dataset, likely due to evolving market conditions that differed from earlier 

training samples. These findings emphasize the importance of regular model 

retraining and adaptive learning mechanisms to maintain high predictive 

performance. 

From a practical perspective, the model’s predictive capabilities demonstrate 

considerable potential for supporting algorithmic trading systems. Its low error 

rates and strong fit to observed trends indicate that it could serve as a core 

component within a larger decision-support framework—particularly when 

integrated with other technical indicators or sentiment-based signals. For 

instance, LSTM predictions could be combined with momentum indicators such 

as RSI or MACD to improve entry/exit accuracy, or used alongside sentiment 

analysis tools to enhance responsiveness to non-technical market drivers. 

Despite its success, several limitations must be acknowledged. The model 

relied exclusively on historical price and volume data, omitting critical external 

variables such as market sentiment, macroeconomic indicators, and blockchain 

network metrics. While this simplification facilitated model development, it 

constrained the ability of the LSTM to fully account for exogenous factors that 

often drive cryptocurrency volatility. The use of a static, historical dataset further 

limited the model’s generalizability, as cryptocurrency markets are inherently 

dynamic and exhibit structural changes over time. The observed lag and 

underestimation patterns likely stem from this static training context, 

underscoring the need for real-time learning and continuous retraining. 

To address these limitations, future research should consider integrating multi-

source data that reflects both technical and behavioral aspects of the market. 

Incorporating sentiment analysis from social media and news sources could 

enhance the model’s ability to anticipate sudden price movements driven by 

collective investor psychology. Similarly, including macroeconomic indicators or 

on-chain analytics (e.g., transaction volume, wallet activity, liquidity depth) could 

provide a more holistic understanding of market forces. On the architectural 

front, exploring advanced deep learning structures such as attention-based 

LSTMs or Transformer networks could improve adaptability and 

responsiveness to volatile conditions. 

Additionally, employing online or incremental learning techniques would allow 

the model to continuously update its parameters as new data becomes 

available, ensuring sustained relevance in fast-changing market environments. 

Expanding the dataset to include higher-frequency intervals (e.g., minute-level 

data) or cross-asset correlations could further strengthen robustness and 

enhance prediction accuracy. Finally, comparative studies involving ensemble 
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or hybrid models—combining LSTM with methods such as CNNs, GRUs, or 

ARIMA—may yield synergistic improvements, balancing interpretability and 

predictive strength. 

In summary, while the LSTM model demonstrated impressive accuracy and 

reliability in forecasting short-term price movements, it also revealed the 

inherent challenges of modeling highly volatile, data-rich markets like 

cryptocurrencies. Continuous adaptation, data diversification, and architectural 

innovation remain essential to fully realize the potential of deep learning in 

financial time series forecasting. 

Conclusion 

This study investigated the effectiveness of Long Short-Term Memory (LSTM) 

neural networks for predicting short-term price movements of the TON-IRT 

trading pair in the blockchain market. The LSTM model demonstrated strong 

predictive capabilities, significantly outperforming traditional baseline models 

such as Linear Regression and ARIMA. The LSTM achieved a high R-squared 

value of 0.8743, indicating that it captured approximately 87.43% of the variance 

in the actual price data and exhibited low error metrics with an MAE of 0.0274 

and an RMSE of 0.0321. These results underscored the LSTM's ability to handle 

complex, non-linear patterns and temporal dependencies in cryptocurrency time 

series data, making it a valuable tool for short-term price prediction in volatile 

markets. 

The analysis also revealed specific areas for improvement, such as the 

observed lag in the model’s predictions during periods of rapid market shifts and 

the slight underestimation of peak values. These findings suggest that while the 

LSTM model was adept at capturing general trends, it occasionally struggled 

with adapting to sudden changes in market dynamics. Overall, the study 

confirmed that LSTM neural networks offer a robust approach to short-term 

price prediction in cryptocurrency, providing actionable insights that can 

enhance trading strategies and decision-making processes. 

This study contributed to the field of blockchain trading analytics by 

demonstrating the applicability and advantages of using LSTM neural networks 

for predicting price movements in the cryptocurrency market. The research 

highlighted the LSTM model's superior performance compared to traditional 

statistical methods, illustrating its potential to handle the unique challenges 

posed by the high volatility and complex behavior of cryptocurrency prices. 

Integrating advanced machine learning techniques, such as LSTMs, into 

blockchain analytics provides a powerful framework for developing predictive 

models that can inform trading strategies and improve market efficiency. 

Furthermore, this study emphasized the importance of feature engineering and 

the careful selection of input variables in enhancing the predictive accuracy of 

machine learning models in financial markets. The findings suggest that 

incorporating advanced neural network architectures like LSTM can lead to 

more reliable and precise forecasting tools, which are crucial for market 

participants seeking to gain a competitive edge in the fast-paced and rapidly 

evolving blockchain ecosystem. 

The results of this study have several practical implications for traders and 

investors in the cryptocurrency market. The LSTM model's ability to accurately 
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predict short-term price movements can help traders optimize their entry and 

exit points, thereby maximizing profits and minimizing losses. By effectively 

anticipating market trends and reversals, traders can develop more informed 

and strategic approaches to their investments, reducing the reliance on purely 

speculative decisions. The model’s predictive insights can also support risk 

management efforts by providing early warning signals for potential market 

downturns or periods of increased volatility. 

For investors, using LSTM-based models could facilitate better portfolio 

management and allocation strategies, allowing them to adjust their holdings 

based on anticipated market conditions. Additionally, the model's capacity to 

integrate with other trading tools and analytics platforms offers the potential for 

developing comprehensive trading systems that leverage machine learning for 

continuous market analysis and decision support. These practical applications 

underscore the relevance of advanced predictive models in enhancing the 

overall effectiveness and profitability of trading activities in the cryptocurrency 

market. 

Future research could build upon the findings of this study by exploring several 

avenues for improvement and expansion. One potential direction is the 

integration of external factors, such as market sentiment, macroeconomic 

indicators, and news events, into the predictive models. Incorporating these 

additional data sources could provide a more holistic view of market conditions, 

thereby enhancing the model's ability to anticipate abrupt market changes. 

Advanced modeling techniques, such as attention-based LSTM networks or 

Transformer models, could also be explored to address the limitations observed 

in the current study, particularly the lag in predictions during periods of high 

volatility. 

Another area for future exploration is the application of ensemble learning 

techniques, which combine the strengths of multiple models to improve overall 

prediction accuracy and robustness. Expanding the dataset to include different 

timeframes, cross-asset correlations, and more granular data could further 

refine the model's performance. Implementing adaptive learning approaches 

that enable the model to update continuously with new data could also enhance 

its responsiveness to changing market dynamics, ensuring that the predictive 

insights remain relevant and accurate over time. 
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