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ABSTRACT

This study analyzed the volatility and risk profiles of three prominent blockchain-
based cryptocurrencies—Dogecoin, Polygon, and Solana—using the Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) model. Volatility, a key risk
metric for cryptocurrencies, was modeled through the GARCH(1,1) framework, which
effectively captured the time-varying nature of price fluctuations. The analysis
revealed that Dogecoin exhibited the highest volatility and risk, primarily driven by its
speculative market behavior and social media influence. Polygon and Solana, while
also volatile, demonstrated more stability, with their risk profiles reflecting the
technological advancements and broader use cases within their respective
blockchain ecosystems. The study also incorporated Value at Risk (VaR) and
Conditional Value at Risk (CVaR) metrics to assess the potential downside risks for
each cryptocurrency. Dogecoin had the highest potential for extreme losses, followed
by Polygon and Solana. The GARCH model successfully identified the volatility
persistence in these assets, showing that past market conditions heavily influenced
future volatility. This research contributes to the literature on cryptocurrency volatility
by applying the GARCH(1,1) model to analyze digital assets with varying market
characteristics. The findings emphasize the need for robust risk management
strategies tailored to the unique behaviors of individual cryptocurrencies. Limitations
of the study included the use of historical data and the focus on only three
cryptocurrencies, suggesting opportunities for future research. Potential areas for
further study include the incorporation of additional variables, such as
macroeconomic indicators, and the exploration of alternative volatility models, such
as EGARCH or TGARCH, to better capture the complexities of cryptocurrency
markets. These insights provide valuable guidance for investors, risk managers, and
policymakers navigating the volatile and evolving landscape of blockchain-based
digital assets.

Cryptocurrency Volatility, GARCH Modeling, Risk Assessment, Dogecoin
Polygon Solana, Blockchain Finance

Blockchain technology, which was initially developed to serve as the
foundational framework for cryptocurrencies such as Bitcoin, has rapidly
evolved into a transformative force across multiple sectors, with a particularly
profound impact on finance. The decentralized nature of blockchain,
characterized by its distributed ledger technology (DLT), has introduced new
standards of transparency, security, and efficiency in financial transactions. This
technology's key attributes—immutability, traceability, and consensus
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mechanisms—have created a robust environment for conducting financial
operations, significantly reducing fraud risks and enhancing data integrity.
Studies have highlighted that blockchain's secure and transparent nature not
only protects against data tampering but also ensures that all participants in the
network have access to the same, unalterable information, thereby fostering
trust and reliability in financial dealings , . In the financial sector,
blockchain's influence has become increasingly pronounced, as this disruptive
technology is redefining traditional banking practices. Blockchain has enabled
faster and more cost-effective transactions, particularly in the realms of cross-
border payments and remittances. Unlike conventional systems that rely on a
series of intermediaries, blockchain facilitates direct peer-to-peer transactions,
reducing transaction costs and dramatically accelerating processing times. For
instance, processes that traditionally took several days can now be completed
in seconds or minutes, substantially improving legacy banking systems [3],
Furthermore, integrating smart contracts—self-executing contracts with the
terms directly written into code —has streamlined various financial operations,
such as lending and credit, by automating compliance and execution processes.
This automation reduces the need for manual intervention, further enhancing
efficiency and reducing the potential for human error [5],

Cryptocurrencies played a pivotal role in the blockchain ecosystem, serving as
both a medium of exchange and a store of value. Their emergence
fundamentally altered the landscape of financial transactions, enabling
decentralized and peer-to-peer exchanges without the need for traditional
intermediaries. This shift led to a significant increase in the adoption of
cryptocurrencies. Bitcoin is the most notable example, followed by a myriad of
altcoins designed to cater to various market needs [7], [8]. The decentralized
nature of cryptocurrencies, underpinned by blockchain technology, ensured that
transactions were secure, transparent, and immutable, attracting both individual
and institutional investors who were drawn to the potential benefits of operating
outside the constraints of conventional financial systems , . The
widespread adoption of cryptocurrencies could be attributed to several factors,
including the desire for financial sovereignty, the appeal of anonymity, and the
potential for high returns on investment. As governments and corporations
began to recognize the legitimacy of cryptocurrencies, many initiated the
development of their own digital currencies, further propelling the trend toward
mainstream acceptance . However, the cryptocurrency market was
characterized by significant volatility, which posed both opportunities and risks
for investors. Price fluctuations were often extreme and influenced by factors
such as market sentiment, regulatory news, and technological advancements

, . This volatility deterred some potential users and investors, raising
concerns about the stability and reliability of cryptocurrencies as a form of
payment or investment :

The interconnectedness of cryptocurrencies also played a significant role in the
volatility observed within the market. Price movements in one major
cryptocurrency, such as Bitcoin, often influenced others, leading to contagion
effects across the market , . For example, a significant price drop in
Bitcoin could trigger widespread sell-offs in altcoins, further amplifying market
volatility. This interconnectedness required investors to adopt a more nuanced
understanding of market dynamics, considering the performance of individual
cryptocurrencies and their relationships with one another. The intricate web of
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correlations between different cryptocurrencies necessitated a broader analysis
of market conditions, as changes in one asset could have ripple effects
throughout the market . Assessing volatility and risk in cryptocurrencies
associated with blockchain networks that supported non-fungible tokens
(NFTs), such as Dogecoin, Polygon, and Solana, was crucial for understanding
their impact on the broader market and investment landscape. These
cryptocurrencies served as mediums of exchange and played pivotal roles in
the rapidly growing NFT market, which gained immense popularity and attracted
substantial investment interest. The inherent volatility of these digital assets
significantly influenced investor behavior, market dynamics, and the overall
stability of the NFT ecosystem, making it essential to evaluate and understand
the risks associated with their price movements.

The psychological effects of volatility on investor behavior also played a
significant role in the dynamics of the cryptocurrency and NFT markets.
Investors in these markets often exhibited herding behavior, where they tended
to mimic the actions of others, particularly during periods of heightened market

volatility . This tendency was amplified in the NFT market, where trends
could shift rapidly due to social media influence or celebrity endorsements,
leading to sharp and often unpredictable price movements . As a result,

understanding the psychological drivers of investor behavior in the face of
volatility was essential for those looking to navigate the risks of investing in
cryptocurrencies and NFTs. Such insights could help investors make more
informed decisions and better manage the inherent risks of these highly volatile
markets. Furthermore, the interconnectedness between cryptocurrencies and
NFTs underscored the importance of assessing volatility across these markets.
Price movements in one asset could significantly impact the other, leading to
broader market repercussions. For example, a sharp decline in the price of
Solana could diminish investor confidence in NFTs minted on its blockchain,
potentially triggering a wider market downturn . This interconnected risk
highlighted the need for comprehensive volatility assessments for individual
cryptocurrencies and the broader NFT market. Evaluating these risks could
provide valuable insights into the resilience of these interconnected markets and
inform strategies to mitigate potential adverse effects.

The primary goal of this study was to analyze and model the volatility and risk
associated with three prominent blockchain-based cryptocurrencies: Dogecoin,
Polygon, and Solana. These cryptocurrencies were selected due to their distinct
characteristics and their relevance in the broader cryptocurrency market. The
study utilized the GARCH model, a well-established statistical tool for assessing
time-varying volatility in financial markets. The GARCH model was chosen for
its ability to capture the dynamic nature of volatility, which is crucial for
understanding the risk profiles of highly volatile assets like cryptocurrencies.
Through this analysis, the study aimed to provide a deeper understanding of the
volatility patterns of Dogecoin, Polygon, and Solana, and to identify the factors
that contribute to their risk levels. The significance of this analysis extended
beyond academic interest, as it had practical implications for investors and
stakeholders in blockchain technology and cryptocurrency markets. For
investors, understanding the volatility and risk associated with these
cryptocurrencies was essential for making informed decisions regarding
portfolio management and risk mitigation. High volatility in cryptocurrencies
often translated to both substantial opportunities for returns and significant risks
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of loss. Therefore, accurately modeling this volatility using GARCH techniques
could provide valuable insights into potential price fluctuations and the stability
of these digital assets. For stakeholders in the blockchain and cryptocurrency
industries, including developers, policymakers, and financial institutions,
insights from this study could inform strategies for managing risk, enhancing
market stability, and fostering sustainable growth in the cryptocurrency
ecosystem. This study specifically sought to answer the research question:
"How do Dogecoin, Polygon, and Solana exhibit volatility and risk, and how can
GARCH modeling provide insights into their stability and risk profiles?"
Addressing this question required thoroughly examining each cryptocurrency's
historical price data and applying GARCH modeling to capture the nuances of
their volatility patterns. The research aimed to uncover how these
cryptocurrencies respond to market conditions, identify periods of heightened
risk, and evaluate the potential for future price instability. Ultimately, the findings
of this study were intended to contribute to the broader understanding of
cryptocurrency volatility, providing actionable insights for market participants
seeking to navigate the complexities of investing in blockchain-based digital
assets.

Volatility in Financial Markets

Volatility in the context of financial markets refers to the degree of variation in
trading prices over time and is commonly measured by the standard deviation
of returns. It served as a critical risk indicator, reflecting the uncertainty and
potential for an asset or market price fluctuations. High volatility indicated a
greater degree of price movement, which could lead to increased risk for
investors, as it suggested that the asset's price could change dramatically over
a short period. Conversely, low volatility suggested more stable prices and
potentially lower risk, making such assets more appealing to risk-averse
investors , . This fundamental concept was widely utilized in financial
analysis and was essential for understanding the behavior of markets under
various conditions. In financial markets, volatility was influenced by many
factors, including economic indicators, market sentiment, and external shocks
such as geopolitical events, natural disasters, or changes in monetary policy.
For example, during periods of economic uncertainty or crisis, such as the
global financial turmoil triggered by the COVID-19 pandemic, market volatility
increased significantly as investors reacted to rapidly changing conditions and
adjusted their portfolios accordingly . This heightened volatility could lead to
rapid and unpredictable price changes, affecting individual asset classes and
broader market dynamics. Understanding these fluctuations was crucial for
investors, as volatility directly shaped their behavior and decision-making
processes.

Understanding volatility was crucial for effective risk management and
formulating investment strategies in financial markets, especially within the
context of cryptocurrencies and digital assets like non-fungible tokens (NFTs).
Volatility is the degree of variation in trading prices over time and is a key risk
indicator. In the highly dynamic cryptocurrency market, where price fluctuations
were often extreme, comprehending volatility was essential for investors
seeking to navigate this complex landscape and protect their investments from
adverse market movements. Volatility directly impacted risk management
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strategies, as it measured the uncertainty and potential for loss associated with
an investment. Investors needed to assess the level of risk tied to their
cryptocurrency holdings to safeguard their portfolios against significant financial
losses. High volatility could lead to abrupt and substantial price swings, posing
considerable risks if not managed properly. For instance, strategies such as
employing stop-loss orders allowed investors to mitigate losses during periods
of heightened volatility by automatically triggering the sale of assets once they
reached a predetermined price threshold . Additionally, a thorough
understanding of volatility enabled investors to adjust their asset allocation and
diversify their portfolios, effectively spreading risk and reducing overall
exposure . Diversification across different asset classes or cryptocurrencies
could help stabilize portfolio performance, as not all assets responded to market
conditions similarly.

Volatility in Cryptocurrencies

The study of cryptocurrency volatility garnered significant attention as the
market matured and expanded, highlighting common patterns and challenges
that were crucial for investors and policymakers. Understanding these patterns
was essential for assessing the risks and opportunities associated with
cryptocurrency investments, particularly as these assets continued to gain
prominence in global financial markets. One of the most prominent patterns
observed in the study of cryptocurrency volatility was the consistently higher
volatility of cryptocurrencies compared to traditional financial assets like stocks
and bonds. Cryptocurrencies such as Bitcoin, Ethereum, and Dogecoin often
exhibited annualized returns far exceeding those of major equity indices,
reflecting their extreme price fluctuations. For instance, Ethereum and Dogecoin
demonstrated returns of 139.73% and 125.79%, respectively, significantly
higher than traditional indices like the S&P 500 . This heightened volatility
was largely attributed to the speculative nature of the cryptocurrency market,
where prices were heavily influenced by investor sentiment, leading to rapid and
unpredictable price swings. Another common pattern in cryptocurrency volatility
was the impact of external events. Studies indicated that global events, such as
the COVID-19 pandemic, significantly influenced cryptocurrency markets, often
resulting in increased volatility as cryptocurrencies were perceived as
alternative safe-haven assets during periods of economic uncertainty ,
This tendency for cryptocurrencies to react strongly to external shocks
underscored the market's sensitivity to broader economic conditions and
highlighted investors' challenges in predicting market movements. Additionally,
research identified asymmetric volatility in cryptocurrencies, where positive and
negative market shocks affected price movements differently. Typically,
negative news or events led to larger spikes in volatility compared to positive
news, complicating risk management efforts and emphasizing the need for
tailored approaches to managing downside risks in cryptocurrency investments
, . Volatility clustering was another widely observed characteristic of
cryptocurrency markets. Numerous studies documented this phenomenon,
where periods of high volatility were followed by more high volatility and periods
of low volatility were followed by more low volatility. It played a crucial role in
modeling and forecasting cryptocurrency volatility . The presence of
volatility clustering suggested that past volatility could predict future volatility,
which was particularly relevant for applying GARCH models and other predictive
techniques in assessing the risk profiles of cryptocurrencies. Despite the
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advancements in understanding cryptocurrency volatility, researchers faced
several challenges in accurately modeling and interpreting this volatility due to
the market's unique characteristics. One of the primary challenges was the
complexity of modeling cryptocurrency price dynamics. While GARCH models
were widely used to capture the volatility patterns in financial markets, their
application to cryptocurrencies often fell short of fully capturing the nuances of
these assets. Researchers noted that traditional GARCH models might not
adequately account for the asymmetric nature of cryptocurrency volatility,
leading to the exploration of alternative approaches such as smooth transition
GARCH models to better represent the behavior of these markets ,

GARCH Modeling in Volatility Analysis

The GARCH model was a statistical tool extensively used in finance to analyze
and forecast volatility in time series data. Developed by Tim Bollerslev in 1986,
the GARCH model extended the earlier Autoregressive Conditional
Heteroskedasticity (ARCH) model introduced by Robert Engle in 1982. The
primary advantage of the GARCH model lay in its ability to capture the time-
varying volatility often observed in financial markets, where the variance of error
terms was not constant over time. This characteristic was particularly valuable
in financial contexts, as volatility clustering—periods of high volatility followed
by high volatility and low by low—was a common feature of asset returns. The
GARCH model's ability to account for these fluctuations made it a powerful tool
for modeling and predicting market behavior under varying conditions .One
of the key features of the GARCH model was its capacity to capture conditional
heteroskedasticity, meaning that current volatility depended on past error terms
and previous levels of volatility. This feature allowed the GARCH model to adapt
to changing market conditions, making it well-suited for periods of both high and
low volatility . Additionally, extensions of the GARCH model, such as the
GJR-GARCH model, addressed the asymmetry in volatility, where negative
shocks typically led to larger increases in volatility than positive shocks of similar
magnitude. This aspect was particularly relevant in financial markets, where bad
news often resulted in more pronounced volatility spikes than good news, thus
accurately reflecting market dynamics

GARCH models were widely applied in various areas of financial volatility
analysis, reflecting their versatility and robustness in capturing market behavior.
One prominent application was in risk management, where GARCH models
were used to estimate Value-at-Risk (VaR). VaR quantifies the potential loss in
value of an asset or portfolio over a defined period for a given confidence
interval. By accurately modelling volatility, GARCH models provided more
reliable estimates of potential losses, which were crucial for institutions seeking
to manage financial risk effectively . In asset pricing, GARCH models
accounted for time-varying volatility, significantly affecting the pricing of
derivatives and other financial instruments. This helped in understanding how
volatility impacted expected returns, thereby improving the accuracy of asset
pricing models . Another critical application of GARCH models was in
forecasting future volatility based on historical data. This was particularly
important for traders and investors who relied on predictions of market
conditions to make informed decisions. Studies demonstrated that GARCH
models often outperformed simpler models in predicting volatility, underscoring
their utility in financial forecasting . Researchers also utilized GARCH
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models to analyze the volatility of various financial markets, including equities,
commodities, and cryptocurrencies. For instance, applying GARCH models to
Bitcoin and other cryptocurrencies provided insights into their price dynamics
and risk characteristics, highlighting the models' relevance in the evolving
landscape of digital assets . Furthermore, comparative studies frequently
evaluated GARCH models against other forecasting techniques, such as
machine learning approaches, to determine their effectiveness across different
market conditions. Findings suggested that hybrid models combining GARCH
with machine learning could enhance forecasting accuracy, reflecting the
continuous evolution of volatility modeling techniques

Applications of GARCH in Cryptocurrency Volatility

Research utilizing the GARCH model for assessing cryptocurrency volatility
expanded significantly in recent years, reflecting this asset class's unique
characteristics and behaviors. The GARCH model, known for capturing time-
varying volatility often observed in financial time series, became a standard tool
for analyzing the volatility patterns of cryptocurrencies. This research provided
valuable insights into cryptocurrency markets' dynamic and often unpredictable
nature, revealing both common patterns and specific challenges that
differentiated these assets from traditional financial instruments. Research
frequently compared the performance of various GARCH-type models to
identify the most suitable specifications for different cryptocurrencies. Studies
highlighted that no single GARCH model was universally optimal; instead, the
best-fitting model often depended on the specific characteristics of the analysed
cryptocurrency. For instance, some studies found that the Integrated GARCH
(IGARCH) model provided a better fit for Bitcoin's volatility, while others
suggested that the Threshold GARCH (TGARCH) model was more effective in
capturing the unique volatility dynamics of other cryptocurrencies ,
These comparative analyses were essential for refining volatility forecastlng
techniques and improving the accuracy of risk assessments in the rapidly
evolving cryptocurrency market.

Additionally, the impact of external events, such as the COVID-19 pandemic,
on cryptocurrency volatility was a significant area of focus in the literature.
Studies indicated that periods of market stress, like those experienced during
global economic downturns, led to increased volatility in cryptocurrency
markets, necessitating the use of GARCH models to assess and forecast these
changes effectively , . Understanding how external shocks influenced
volatility was vital for investors and policymakers, as it provided a basis for
anticipating market responses to future events and formulating strategies to
mitigate potential risks. Despite the extensive use of GARCH models in
cryptocurrency research, several challenges persisted. One of the primary
challenges was data limitations, as the relatively short history of cryptocurrency
markets posed difficulties in data availability and quality, which could affect the
robustness of GARCH model estimates. Many cryptocurrencies had only been
actively traded for a few years, making it difficult to establish long-term volatility
trends and patterns , . Furthermore, the unique characteristics of
cryptocurrencies, such as fat tails and volatility clustering, required careful
consideration when selecting the appropriate GARCH model. Standard GARCH
models might not adequately capture these nuances, necessitating ongoing
refinement and adaptation of modeling techniques ,
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The research method for this study consists of several steps to ensure a
comprehensive and accurate analysis. The flowchart in outlines the
detailed steps of the research method.
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Data Collection

The data for this study were collected from historical price datasets of three
cryptocurrencies: Dogecoin, Polygon, and Solana. The datasets, named
“dogecoin.csv’, ‘polygon.csv’, and “solana.csv’, contained daily trading data for
each cryptocurrency over specified time periods. The time period covered by
each dataset varied slightly due to differences in the availability of trading data,
reflecting the varying launch dates and trading activity levels of these
cryptocurrencies. Dogecoin's dataset covered a longer period, beginning from
its earlier market inception, while Polygon and Solana datasets spanned
shorter, more recent intervals coinciding with their respective launches and
growing popularity in the cryptocurrency market. These datasets provided a
comprehensive view of the price behavior and trading volume for each
cryptocurrency, making them suitable for analyzing and modeling volatility using
GARCH techniques. The data fields used in each dataset included essential
trading information that was necessary for volatility analysis. The primary fields
were "Date’, ‘Open’, "High', 'Low’, "Close’, "Adj Close’, and "Volume'. The
‘Date’ field recorded the specific trading day, allowing for time-series analysis
of price movements. ‘Open’, "High®, "Low’, and "Close" fields provided daily
trading prices, with "Open’ representing the initial price at the start of the trading
day, 'High® and "Low’ reflecting the highest and lowest prices reached during
the day, and "Close’ indicating the final trading price at the end of the day. The
"Adj Close™ field adjusted the closing price for dividends and stock splits,
reflecting an asset's value more accurately over time. The "Volume' field
captured the total number of units traded daily, serving as a proxy for market
activity and liquidity. These fields were critical for calculating daily returns and
assessing volatility, which formed the basis of the GARCH modeling approach
used in this study. The datasets were carefully prepared and preprocessed to
ensure the integrity and consistency of the data. Missing values were addressed
using forward-fill techniques to maintain continuity in the time series, and all

Alkhoze and Almasre (2025) J. Digit. Mark. Digit. Curr. 375



Journal of Digital Market and Digital Currency

prices were converted into a consistent numerical format to facilitate accurate
analysis. The completeness and reliability of these data fields enabled a robust
examination of the volatility characteristics of Dogecoin, Polygon, and Solana,
thereby providing a solid foundation for applying GARCH models to understand
their risk profiles. This approach ensured that the analysis was based on high-
quality, representative data reflecting the real-world trading conditions of these
cryptocurrencies.

Exploratory Data Analysis (EDA)

The initial step in the exploratory data analysis involved data cleaning and
preparation to ensure the datasets were suitable for further analysis and
modeling. The Dogecoin, Polygon, and Solana datasets were first inspected for
missing values, format inconsistencies, and data type issues. Missing values in
the price fields were addressed using forward-fill methods, where the most
recent available value was carried forward to fill gaps. This approach was
selected to maintain continuity in the time series, which is crucial for accurate
volatility modeling. Additionally, any missing values in the "Volume™ field were
filled with zeros to indicate no trading activity, ensuring that the data reflected
realistic market conditions without introducing artificial bias. Data types were
standardized to facilitate smooth computations; specifically, date fields were
converted into a consistent datetime format, and numerical fields such as
"Open’, "High', "Low’, "Close’, "Adj Close’, and "Volume™ were ensured to be
in float or integer formats as appropriate. Format inconsistencies, such as
commas in numbers or incorrect decimal points, were corrected to avoid
calculation errors. Outliers were reviewed contextually rather than removed
automatically, given that extreme values might represent genuine market
conditions rather than data errors. This careful data cleaning and preparation
stage helped establish a reliable dataset foundation, enabling robust
subsequent analyses of cryptocurrencies' volatility and risk characteristics.

Following data cleaning, descriptive statistics were calculated to provide an
overview of the key metrics for the "Close™ prices of Dogecoin, Polygon, and
Solana. Descriptive statistics included measures such as mean, median,
standard deviation, minimum, and maximum values. The mean and median
provided insights into the central tendency of the "Close™ prices, reflecting the
average price levels over the observation period. Standard deviation, a key
measure of dispersion, highlighted the extent of price variability directly related
to volatility. Higher standard deviation values indicated greater price
fluctuations, emphasizing the inherent volatility of each cryptocurrency. For
example, the analysis showed that Dogecoin exhibited a relatively high standard
deviation compared to Polygon and Solana, suggesting that its prices were
more prone to large swings. The maximum and minimum values were also
noted, providing context for the price ranges that investors experienced during
the period. These descriptive statistics served as a preliminary indicator of the
relative risk levels associated with each cryptocurrency, setting the stage for
more detailed volatility modeling using the GARCH approach.

Various visualisations were employed to further explore the historical price
behavior and volatility of Dogecoin, Polygon, and Solana. Line plots of the
"Close’ prices in were generated to visualize historical price trends,
showing how each cryptocurrency's value evolved over time. These plots
helped identify patterns such as upward or downward trends, sharp price
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Historical Close Price Trend - dogecoin.csv

spikes, and periods of relative stability. For instance, Dogecoin's line plot
revealed significant price surges linked to specific market events, while Polygon
and Solana exhibited more gradual price increases over time, reflecting their
growth trajectories in the market.
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Histograms of daily returns were also constructed to observe the distribution
patterns of returns for each cryptocurrency, shown in figure 3. These histograms
illustrated the frequency of different return levels, highlighting whether returns
were symmetrically distributed or skewed towards positive or negative values.
The presence of heavy tails in the histograms indicated occurrences of extreme
returns, a common feature in cryptocurrency markets that contributes to their
high volatility. This analysis provided insights into the potential for large gains
or losses, underscoring the speculative nature of these digital assets.

Daily Retums Distribution - polygon.csv Daily Returns Distribution - solana.csv

Daily Retum

Daily Returns Distribution

Additionally, rolling standard deviation plots were used to explore volatility over
time, capturing the dynamic nature of risk in these markets, shown in figure 4.
The rolling standard deviation was calculated using a moving window approach,
typically over a 30-day period, to reflect the changes in volatility levels as market
conditions evolved. These plots allowed for identifying periods of heightened
volatility, such as during market corrections or external shocks, and helped
understand the persistence of volatility clusters. For example, Solana's rolling
standard deviation plot showed distinct periods of increased volatility
corresponding to major market events or technological updates, which
significantly affected investor sentiment and trading behavior. These visual
analyses provided a comprehensive view of each cryptocurrency's historical
performance and risk characteristics, forming a solid basis for the subsequent
GARCH modeling and volatility assessment.
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Volatility Modeling Using GARCH

The volatility modeling for Dogecoin, Polygon, and Solana used the GARCH
model, specifically the GARCH(1,1) variant. The GARCH(1,1) model was
chosen due to its widespread use and proven effectiveness in capturing the
time-varying volatility often observed in financial time series. The GARCH(1,1)
model extends the basic Autoregressive Conditional Heteroskedasticity (ARCH)
model by incorporating both past error terms (squared residuals) and past
volatility estimates into the current volatility forecast. This specification can be
represented mathematically as:

2 _ 2 2
of = ag + a6t + B10{4

where o¢fis the conditional variance at time t, ayis a constant term,
a, represents the coefficient for the lagged squared residuals (the ARCH term),
and B, is the coefficient for the lagged conditional variance (the GARCH term).
This structure allows the model to adjust volatility predictions based on recent
market behavior, effectively capturing periods of high and low volatility. The
GARCH(1,1) model's simplicity and ability to reflect volatility clustering—where
large changes tend to be followed by large changes—made it a suitable choice
for this study, providing a robust framework for analyzing the volatility dynamics
of the selected cryptocurrencies. The process of fitting the GARCH(1,1) model
to each cryptocurrency's daily returns involved several steps. First, the daily
returns were calculated as the logarithmic differences of the adjusted closing
prices, providing a normalized measure of price changes that could be analyzed
over time. These returns were then used as the input for the GARCH(1,1)
model, with the model parameters estimated using maximum likelihood
estimation (MLE). MLE is a method that seeks to find the parameter values that
maximize the likelihood function, ensuring the best fit of the model to the
observed data.
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To fit the GARCH(1,1) model, each cryptocurrency dataset was independently
processed using specialized statistical software capable of handling time-series
analysis and volatility modeling. Initial parameter values were set based on
standard practices, and iterative algorithms were employed to refine these
values until convergence was achieved. The optimization process involved
evaluating the likelihood function repeatedly and adjusting the parameters to
minimize the difference between the model's predicted volatility and the
observed data. Diagnostic checks, including residual analysis, were performed
to ensure the adequacy of the model fit, identifying any potential anomalies or
mis-specifications that could impact the validity of the results. This rigorous
fitting process aimed to accurately capture the volatility characteristics unique
to each cryptocurrency, allowing for detailed risk assessment and comparison
across Dogecoin, Polygon, and Solana. The evaluation of the fitted
GARCH(1,1) models was conducted using several goodness-of-fit metrics, with
a primary focus on the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC). Both AIC and BIC are widely used in model
selection, providing a means to assess the relative quality of statistical models
based on their complexity and fit to the data. AIC evaluates models based on
the likelihood of the data given the model, penalizing for the number of
estimated parameters to discourage overfitting. Similarly, BIC provides a
measure that incorporates the sample size, further penalizing models that use
more parameters. This helps ensure that the selected model is both
parsimonious and effective in capturing the underlying data patterns.

For each cryptocurrency, the GARCH(1,1) model's AIC and BIC values were
calculated and compared to identify the most efficient model configuration.
Lower values of AIC and BIC indicated a better fit relative to other potential
models, balancing goodness-of-fit with model simplicity. In addition to these
criteria, the models were also evaluated based on the statistical significance of
the estimated parameters «ay, a;, and ;. Significant parameters suggested that
the model appropriately captured the dynamics of volatility in the cryptocurrency
market, while non-significant parameters might indicate the need for further
refinement or alternative modeling approaches. Residual diagnostics, including
tests for autocorrelation and heteroskedasticity, were also performed to ensure
the residuals of the fitted models conformed to the assumptions of the GARCH
process. Specifically, the absence of significant autocorrelation in the
standardized residuals indicated that the model effectively captured the serial
dependence in volatility, while the constant variance in the residuals confirmed
that the GARCH model had adequately modelled the time-varying volatility.
These comprehensive evaluation steps ensured that the GARCH(1,1) models
provided reliable insights into the volatility and risk profiles of Dogecoin,
Polygon, and Solana, supporting the study’s goal of assessing the stability of
these blockchain-based cryptocurrencies.

To formalize the computational procedure, the algorithm 1 is presented,
detailing each step of the modeling process—from data preparation to
diagnostic evaluation. The pseudocode outlines the following key stages: (1)
initialization and computation of log-returns, (2) specification of the conditional
variance equation h; = w + as?_; + Bh,_,, (3) parameter estimation using the
Gaussian Quasi Maximum Likelihood (QML) method, (4) calculation of
standardized residuals, (5) diagnostic testing using Ljung—Box and ARCH-LM
procedures, and (6) model evaluation through information criteria such as AIC
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and BIC.

Algorithm 1. GARCH(1,1) Volatility Modeling

Initialize
+ Assets = {Dogecoin, Polygon, Solana}.
+ For each asset, prepare storage for estimates, diagnostics, and criteria.

Data preparation (per asset)

* Load adjusted close prices {P, ..., P, }.

+ Compute log-returns: r; =In (P,) —In (P,_;), t = 2, ...,n.
* Let the effective sample sizeben' =n —1.

+ Estimate mean: u = %Z;;z T

* Residuals: &, =1, — p.

Model specification (GARCH(1,1))

- Conditional variance recursion: h, = w + ag?; + fhi_, t = 2,..., 1.

+ Parameter constraints (positivity and covariance stationarity): w >0, a >0, 8 =
0,a+pB<1.

« Unconditional variance (if « + 8 < 1): Var (1) = —

1-a-p’

+ Initialization of variance:
w
—, ifa+pB<1,
h={1-a-p§ d
Var (&), otherwise.

Likelihood (Gaussian QML) and estimation
» Parameter vector: 6 = (u, w, a, ).
+ Given 6, generate the sequence {h,}via the recursion above.
+ Gaussian log-likelihood:

1
00) = ~3
t=2
+ Maximize ¢(8)subjectto w >0, >0, § = 0, a + 8 < 1,using a numerical
optimizer (e.g., BFGS or L-BFGS-B).
« Obtain estimates 8 = (4, @, &, B).
- Recompute {h,}using 6.

Standardized residuals
*Zy = S—Jht_, t=2,..,n
t
Inference (large-sample MLE)
- Let Abe the observed Hessian of —£(#)at 6.
- Covariance matrix: Cov (8) ~ A1,

- Standard errors: SE; = / .

. 0;
- t-statistics: t; = £
SE]-

» Two-sided p-values from large-sample normal approximation.

Diagnostic checks
* Ljung—Box on z,(autocorrelation):

2:’” 7 (2)?
' ] k
Qm_n(n +2) k_ln/_k‘

where 1, (2)is the lag-k sample autocorrelation of {z,}.
» Ljung—Box on z?(remaining ARCH):
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) " 1 (2%)?
m =n'(n' +2) E v
k=1

« ARCH-LM(q): Regress zZon a constant and its glags;
LM =n'-R* ~ yZunder Hy(no remaining ARCH effects).

Information criteria

* Number of estimated parameters k = 4 (1, w, a, B).

- Akaike Information Criterion: AIC = 2k — 2£(8).

- Bayesian Information Criterion: BIC = kIn (n') — 2£(0).

Output (per asset)

- Report {1, @, &, B3}, their SE, t-statistics, and p-values.

- Report log-likelihood #(8), AIC, and BIC.

* Provide the sequences {h,}and standardized residuals {z.}.

« Provide diagnostic test statistics and p-values (Ljung—Box on z,and z?, ARCH-
LM).

Cross-asset comparison

+ Compare AIC and BIC across assets; lower values indicate better fit (parsimony-
adjusted).

- Verify constraints @ + < 1and parameter significance for interpretability and
stability.

End.

Following algorithm ensures a systematic and reproducible framework for
estimating and assessing the GARCH(1,1) model across multiple assets—
specifically Dogecoin, Polygon, and Solana—thereby providing deeper insights
into the volatility dynamics and market stability of digital assets.

Volatility Analysis Results

The volatility analysis for Dogecoin, Polygon, and Solana was conducted using
the GARCH(1,1) model, which provided insights into the dynamic volatility
patterns of these cryptocurrencies. The calculated volatilities demonstrated
distinct behaviors across the three assets, reflecting their unique market
characteristics and the factors driving their price movements. The GARCH(1,1)
model effectively captured the time-varying nature of volatility, which is a
hallmark of cryptocurrency markets. For Dogecoin, the GARCH(1,1) model
parameters indicated a relatively high persistence of volatility, with the
coefficient a; estimated at 0.0500 and B; at 0.9300. This suggested that
Dogecoin’s volatility was primarily driven by its previous values, highlighting the
clustering of high volatility periods. The constant term « was estimated at
0.000237, which, while statistically insignificant, reflected the baseline level of
volatility. The high B; value pointed to a strong influence of past volatility on
current volatility levels, making Dogecoin susceptible to prolonged periods of
market instability.

For Polygon, the estimated parameters showed a different volatility structure,
with @; at 0.2278 and f; at 0.7525. These values indicated that Polygon's
volatility was more sensitive to recent shocks than Dogecoin, as reflected by the
higher a; coefficient. The constant term w was 0.000323, which was marginally
significant, suggesting that baseline volatility had a slightly more pronounced
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role in Polygon’s price fluctuations. The relatively lower B, compared to
Dogecoin implied that volatility shocks in Polygon had a shorter-lived impact,
contributing to a more reactive but less persistent volatility pattern. Solana
exhibited yet another distinct volatility profile, with a; estimated at 0.1671 and
B, at 0.7408. The model suggested that Solana’s volatility was influenced by
both recent shocks and historical volatility, though less persistently than
Dogecoin. The constant term w was estimated at 0.000587, highlighting a
slightly higher baseline volatility than Dogecoin and Polygon. The parameter
estimates suggested that Solana experienced a balanced response between
new market information and existing volatility levels, reflecting a market dynamic
that was neither overly reactive nor highly persistent.

To further illustrate the volatility behavior of Dogecoin, Polygon, and Solana,
line charts were generated to display the volatility over time as modeled by the
GARCH(1,1) framework. These charts visually highlighted periods of
heightened volatility corresponding to major market events or shifts in investor
sentiment. For Dogecoin, the volatility plot (Figure 5) showed sharp spikes
during periods of social media-driven price movements and market speculation,
underscoring its reactive nature to external influences.

GARCH(1,1) Modeled Volatility - dogecoin.csv

08 —— GARCH(1,1) volatility

Volatility
=

ol A JK\MMNJ\.J

2018 2019 2020 2021 2022 2023
Date

GARCH Modeled Volatility for DOGE

The volatility plots for Polygon and Solana displayed different patterns, as
shown in figure 6. Polygon's chart revealed more frequent but less severe
volatility spikes, aligning with its sensitivity to new market shocks as indicated
by the higher a; coefficient. Solana's volatility plot demonstrated relatively
moderate spikes, suggesting a more stable market behavior than Dogecoin and
Polygon, though still reflective of the inherent risks associated with
cryptocurrency investments.

GARCH(1,1) Modeled Volatility - polygon.csv GARCH(1,1) Modeled Volatility - solana.csv

—— GARCH(L,1) Volatility 0225 —— GARCHIL1) Volatility

202005 202009 2021-01 202105 202109 202201 202205 202209 202301 2023-05
Date

|
i « Tl W u\ |
. \MM | ”MM* e | W R w W,

GARCH Modeled Volatility for POLY and SOL
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To assess the accuracy of the GARCH(1,1) models, comparison plots were
generated between the actual observed volatility and the GARCH-fitted volatility
for each cryptocurrency. These comparison plots confirmed that the GARCH
models closely tracked the actual volatility patterns, capturing the key periods
of increased and decreased volatility. For Dogecoin, the GARCH model
accurately mirrored the extreme volatility observed during periods of market
exuberance, validating the model's capacity to reflect real-world volatility
dynamics. Similarly, the fitted volatility for Polygon and Solana showed a good
alignment with the actual data, demonstrating the GARCH model’s
effectiveness in capturing the fluctuating nature of these assets. The plots
highlighted the ability of the GARCH(1,1) model to provide a reliable
approximation of volatility, albeit with some limitations in fully accounting for
sudden market shocks that can be typical in cryptocurrency markets. These
results underscored the utility of GARCH models in assessing and forecasting
volatility, providing valuable insights for investors and stakeholders navigating
the complex landscape of blockchain-based cryptocurrencies.

Risk Analysis

The risk analysis for Dogecoin, Polygon, and Solana was conducted using
Value at Risk (VaR) and Conditional Value at Risk (CVaR) metrics, which are
widely recognized tools for assessing the potential losses in financial
investments. VaR provides a threshold value that predicts the maximum
expected loss over a specified period at a given confidence level, while CVaR,
also known as Expected Shortfall, measures the average loss that exceeds the
VaR threshold. These metrics were calculated for each cryptocurrency at 95%
and 99% confidence levels, offering insights into the potential downside risks
associated with these digital assets under different market conditions. The
results indicated that Dogecoin exhibited the highest levels of risk among the
three cryptocurrencies. At the 95% confidence level, Dogecoin's VaR was found
to be -7.45%, implying that there was a 5% chance that Dogecoin's returns
could fall by more than 7.45% on any given day. At the 99% confidence level,
the VaR increased to -11.20%, highlighting the substantial risk of extreme
losses in the market. The CVaR values for Dogecoin were even more
pronounced, with a 95% CVaR of -11.30% and a 99% CVaR of -16.80%,
indicating that the average losses in the worst-case scenarios could be
significantly higher than the VaR estimates.

Polygon and Solana exhibited relatively lower risk profiles compared to
Dogecoin, but still demonstrated significant potential for losses. Polygon's VaR
at the 95% confidence level was -5.60%, and at the 99% confidence level, it
was -8.90%. The corresponding CVaR values for Polygon were -8.40% and -
13.50%, respectively, suggesting that while Polygon had a lower risk of extreme
losses than Dogecoin, the potential losses in adverse conditions were still
substantial. Solana's risk metrics were similar to Polygon's, with a 95% VaR of
-5.85% and a 99% VaR of -9.10%. Solana's CVaR values were -8.70% at the
95% confidence level and -13.80% at the 99% confidence level, reflecting a

comparable risk profile. The below summarizes the VaR and CVaR
values for Dogecoin, Polygon, and Solana at the 95% and 99% confidence
levels.
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Summary of VaR and CVaR Values

Cryptocurrency  Confidence Level VaR (%) CVaR (%)
Dogecoin 95% -7.45 -11.3
Dogecoin 99% -11.2 -16.8

Polygon 95% -5.6 -8.4
Polygon 99% -8.9 -13.5
Solana 95% -5.85 -8.7
Solana 99% -9.1 -13.8

These results highlighted the considerable risk inherent in cryptocurrency
investments, particularly under extreme market conditions. Dogecoin's higher
VaR and CVaR values reflected its greater susceptibility to large price swings,
likely driven by its speculative nature and sensitivity to social media influences.
In contrast, Polygon and Solana showed more moderate risk levels, suggesting
that their market dynamics were influenced by a broader range of factors,
including technological developments and ecosystem growth. The use of VaR
and CVaR provided a quantitative framework for understanding and comparing
the downside risks of these assets, offering valuable insights for investors and
risk managers in the cryptocurrency space.

Comparative Analysis

The comparative analysis of the volatility and risk profiles of Dogecoin, Polygon,
and Solana revealed distinct differences, highlighting the unique characteristics
of each cryptocurrency. Dogecoin exhibited the highest volatility among the
three, as indicated by its GARCH(1,1) model parameters and its elevated VaR
and CVaR values. The high p; coefficient in Dogecoin’s GARCH model
suggested strong persistence in its volatility, meaning that once volatility
increased, it tended to remain high for extended periods. This behavior was
further reflected in its risk metrics, where the 95% and 99% VaR values were
notably higher than those of Polygon and Solana. Dogecoin's pronounced
volatility and risk profile could be attributed to its speculative nature, amplified
by social media influence and celebrity endorsements, which often led to
sudden and unpredictable price swings. Polygon and Solana, while also
demonstrating significant volatility, showed more moderated risk profiles than
Dogecoin. The GARCH parameters for Polygon and Solana indicated a balance
between the influence of recent shocks a; and historical volatility 5, suggesting
that their price fluctuations were less persistent than those of Dogecoin.
Polygon, with a higher a; coefficient than Solana, responded more acutely to
immediate market changes, reflecting its active engagement in the DeFi space
and sensitivity to developments within the Ethereum network, to which it is
closely linked. Solana, on the other hand, displayed a relatively stable volatility
pattern, likely due to its technological focus on high-speed transactions and
scalability, which may have contributed to more consistent market confidence
compared to the more sentiment-driven Dogecoin.

Several factors contributed to the observed differences in volatility and risk
among Dogecoin, Polygon, and Solana. Market events played a significant role,
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particularly for Dogecoin, which was frequently influenced by social media
activity and endorsements from high-profile figures, making its price highly
reactive to non-fundamental factors. This speculative nature was less prevalent
in Polygon and Solana, which are both integral parts of larger blockchain
ecosystems. Polygon's role as a Layer 2 scaling solution for Ethereum meant
that its volatility was often tied to the broader movements of the Ethereum
network, including changes in gas fees and network congestion. Solana’s focus
on providing a high-performance blockchain with low transaction costs and fast
processing times likely contributed to a more stable investor base, resulting in
less erratic price movements than Dogecoin. Additionally, the inherent
characteristics of each blockchain network influenced their respective volatility
profiles. Dogecoin’s origins as a meme coin and its limited use case beyond
speculative trading contributed to its higher volatility. In contrast, Polygon’s
integration into the Ethereum ecosystem gave it a more defined ultility,
enhancing its value proposition beyond mere speculation. Solana's emphasis
on high-speed, low-cost transactions, supported by its innovative proof-of-
history consensus mechanism, attracted a growing number of dApps and
institutional interest, contributing to its relatively lower volatility and more stable
risk profile.

This study provided a comprehensive analysis of the volatility and risk profiles
of Dogecoin, Polygon, and Solana using GARCH modeling. The results
revealed that Dogecoin exhibited the highest levels of volatility and risk, largely
driven by its speculative nature and susceptibility to social media influence. The
GARCH(1,1) model effectively captured Dogecoin's persistent volatility,
underscoring its potential for prolonged periods of instability. In contrast,
Polygon and Solana demonstrated relatively lower volatility and risk profiles,
with their GARCH parameters indicating a balanced response to recent market
shocks and historical volatility. Polygon’s volatility was influenced by its close
ties to the Ethereum network, while Solana’s technological advancements
contributed to a more stable market performance. The study also highlighted
the differences in VaR and CVaR among the three cryptocurrencies. Dogecoin
shows the highest potential for extreme losses, followed by Polygon and
Solana. This study contributed to the existing literature on cryptocurrency
volatility and risk assessment by applying the GARCH(1,1) model to analyze
three distinct blockchain-based cryptocurrencies: Dogecoin, Polygon, and
Solana. It provided empirical evidence of the varying risk profiles of these
assets, offering a nuanced understanding of how different market dynamics and
technological attributes influence volatility. The study's findings emphasized the
importance of using advanced volatility modeling techniques like GARCH to
capture cryptocurrency markets' complex and time-varying nature.
Furthermore, the research demonstrated the practical utility of VaR and CVaR
metrics in assessing the downside risks associated with these digital assets,
contributing valuable insights for investors, risk managers, and policymakers in
the evolving blockchain technology landscape.

Despite its contributions, this study had several limitations. One key limitation
was the reliance on historical data, which may not fully capture future market
conditions or account for unprecedented events that could impact volatility. The
scope of the GARCH modeling was also limited to the GARCH(1,1)
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specification, which, while effective, may not fully encapsulate all aspects of the
volatility dynamics present in the cryptocurrency market. Additionally, the study
focused exclusively on three cryptocurrencies, which, although representative,
do not encompass the full diversity of the blockchain ecosystem. The analysis
was further constrained by the assumption of normally distributed returns, which
may not always hold true in the highly skewed and leptokurtic distributions
typical of cryptocurrency returns. Future research could address these
limitations by incorporating additional variables that capture broader market
conditions, such as macroeconomic indicators, regulatory changes, or social
media sentiment, to enhance the predictive accuracy of volatility models.
Exploring alternative modeling approaches, such as EGARCH, TGARCH, or
machine learning-based methods, could also provide deeper insights into
cryptocurrency volatility's asymmetric and nonlinear nature. Expanding the
scope of the analysis to include a wider range of blockchain-based
cryptocurrencies, particularly those with different use cases or governance
structures, could offer a more comprehensive view of the volatility landscape.
Moreover, investigating the role of external shocks and spillover effects between
traditional financial markets and cryptocurrencies could further elucidate the
interconnectedness of these assets and their implications for risk management
strategies. Such research would contribute to a more holistic understanding of
the factors driving volatility in the rapidly evolving world of digital finance.
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