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ABSTRACT

The rapid growth of cryptocurrency markets has created new challenges in
understanding and predicting the structural dynamics of digital asset prices. Bitcoin,
as the most traded blockchain-based currency, exhibits extreme volatility, nonlinear
patterns, and complex regime shifts that traditional financial models cannot
adequately capture. This study proposes a hybrid analytical framework that integrates
K Means clustering with the Hidden Markov Model to identify and model multiple
market regimes in Bitcoin time series data. The Bitcoin dataset used in this research
contains minute-level records that were preprocessed to extract key indicators,
namely logarithmic returns and rolling volatility, which represent the short-term
dynamics of market behavior. The K Means algorithm was first employed to segment
the data into three distinct clusters that correspond to bullish, bearish, and sideways
regimes, followed by the application of the Hidden Markov Model to estimate
probabilistic transitions between these regimes over time. The results reveal that the
hybrid K Means and Hidden Markov Model approach achieves superior performance
compared to a standalone model, as indicated by a higher log likelihood and a lower
Bayesian Information Criterion value. The transition probability matrix shows that
bullish and bearish regimes are highly persistent, while the sideways regime acts as
a transitional buffer that connects both market extremes. The empirical findings
confirm that Bitcoin prices evolve through persistent and probabilistically determined
regimes rather than random fluctuations. The proposed framework provides a more
comprehensive understanding of cryptocurrency market dynamics and offers
practical value for investors, risk analysts, and policymakers in designing adaptive
trading and risk management strategies within blockchain-based financial
ecosystems.

Bitcoin Market Analysis, Hidden Markov Model, K Means Clustering,
Regime Detection, Volatility Modelling

The emergence of blockchain technology has revolutionized the global
financial system by introducing decentralized and transparent
mechanisms for value transfer and asset management [1]. Among the
wide range of blockchain-based applications, Bitcoin has become the
most prominent digital currency and the foundation of the cryptocurrency
ecosystem [2]. As a fully decentralized asset, Bitcoin operates without
centralized oversight, and its price is determined by the interaction of
millions of independent participants across global exchanges. This
decentralized structure creates a market that is highly sensitive to
speculative sentiment, macroeconomic changes, and technological
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innovations, resulting in extreme volatility and unpredictable price
movements . The behavior of Bitcoin prices, therefore, differs
significantly from that of traditional financial assets such as equities or
commodities, presenting unique challenges for modeling, forecasting,
and risk assessment.

Numerous studies have attempted to explain the dynamics of
cryptocurrency prices using traditional statistical and econometric
approaches such as Autoregressive Integrated Moving Average models,
Generalized Autoregressive Conditional Heteroskedasticity models, and
Vector Autoregression frameworks [4]. While these models can capture
linear dependencies and short-term volatility, they often fail to represent
the nonlinear and regime-dependent behavior that dominates
cryptocurrency markets. Empirical evidence has shown that Bitcoin does
not follow a single stationary process but rather exhibits multiple
behavioral states that alternate between phases of growth, decline, and
stability. This characteristic indicates that the Bitcoin market operates
under a regime-switching structure, where different statistical properties
govern price behavior in distinct periods. Capturing these latent regimes
is essential for understanding market sentiment, improving trading
strategies, and managing portfolio risk in a highly volatile environment.

In response to these challenges, this study proposes a hybrid analytical
framework that integrates K Means clustering with the Hidden Markov
Model to detect and model the presence of market regimes in Bitcoin
price data. The combination of clustering and probabilistic modeling
allows for both structural and temporal dimensions of market behavior to
be analyzed. K Means clustering provides an initial unsupervised
segmentation of market conditions based on standardized features of log
returns and volatility, while the Hidden Markov Model captures the
probabilistic transitions among these states over time. This hybrid
approach addresses the limitations of conventional time series models
by incorporating both cross-sectional differentiation and sequential
dependency within the same framework. By applying this model to
minute-level Bitcoin data, the study aims to identify distinct market
regimes, estimate their transition probabilities, and interpret their
economic significance in the context of blockchain-based finance.

The contribution of this research is twofold. From a methodological
perspective, the study introduces an efficient and interpretable hybrid
model that enhances the ability to detect and characterize complex
market regimes in nonstationary financial data. The integration of K
Means clustering for initialization improves the convergence and
accuracy of the Hidden Markov Model, producing more reliable
estimations of transition dynamics. From a practical perspective, the
findings provide insights into how regime persistence, volatility cycles,
and transition probabilities can be used to design adaptive trading
systems and risk management tools for cryptocurrency markets. By
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revealing the underlying probabilistic structure of Bitcoin price
movements, this research contributes to the broader understanding of
blockchain-based financial systems and their implications for digital asset
stability and investor decision-making.

The rapid expansion of digital currencies and blockchain-based financial
systems has attracted considerable academic attention over the past
decade. Bitcoin, introduced by Nakamoto, has become the most
prominent and liquid cryptocurrency, serving as both a digital asset and
a speculative investment instrument [5]. Due to its decentralized nature
and absence of intrinsic value backing, Bitcoin is highly sensitive to
investor sentiment, market speculation, and macroeconomic shocks.
These factors contribute to its extreme volatility and nonlinear price
dynamics, distinguishing it from traditional financial assets such as
equities, commodities, and foreign exchange. Understanding these
complex patterns requires advanced analytical frameworks that can
capture both structural irregularities and dynamic behavioral changes in
the market.

Earlier studies investigating Bitcoin price movements primarily employed
traditional econometric models such as the Autoregressive Integrated
Moving Average and the Generalized Autoregressive Conditional
Heteroskedasticity frameworks. Dyhrberg utilized GARCH models to
study Bitcoin volatility and concluded that Bitcoin exhibits hedging
properties similar to gold and foreign currencies . Similarly, Baur,
Hong, and Lee explored volatility spillovers between Bitcoin and
conventional financial assets and found that Bitcoin behaves as a
speculative asset rather than a haven [7]. Katsiampa extended this
analysis using a GARCH and Markov Switching GARCH approach,
revealing that Bitcoin volatility is regime dependent and influenced by
speculative behavior and macroeconomic uncertainty [8]. These works
established the foundation for volatility modeling in cryptocurrency
markets but remained limited in addressing structural breaks and
nonstationary transitions that frequently occur in high-frequency data.

Subsequent research introduced regime switching and probabilistic
models to overcome the limitations of linear frameworks. Hamilton
pioneered the Hidden Markov Model (HMM) for modeling business cycle
fluctuations, inspiring numerous applications in finance . In
cryptocurrency research, Aloui et al. employed an HMM to identify bullish
and bearish states in Bitcoin and confirmed the persistence of each
regime across time . Work by Trimborn and Hérdle further supported
this approach by showing that Markov switching models capture time-
varying risk and regime shifts more effectively than static volatility models

. More recently, Chen et al. used a Markov Switching Dynamic
Regression model to identify nonlinear transitions in Bitcoin returns,

Haryani (2025) J. Digit. Mark. Digit. Curr. 77



Journal of Digital Market and Digital Currency

revealing that market regimes are influenced by both trading volume and
liquidity shocks . These studies collectively highlight the relevance of
probabilistic state modeling for understanding cryptocurrency behavior,
although most of them focus solely on temporal transitions without
considering the structural heterogeneity present in the data.

Parallel to the development of probabilistic approaches, unsupervised
clustering algorithms have been widely used to uncover hidden patterns
in financial datasets. K Means clustering, in particular, has been applied
to partition financial markets into homogeneous groups based on
volatility, return, or correlation measures. Lahmiri and Bekiros applied K
Means to classify periods of Bitcoin volatility and found that the method
effectively differentiates between tranquil and turbulent market conditions

. Bouri et al. utilized K Means clustering to group cryptocurrencies
according to their return-risk profiles and observed strong heterogeneity
in volatility persistence across digital assets . Other studies, such as
Stosic et al., used hierarchical clustering to detect co-movement patterns
among cryptocurrencies, revealing evidence of contagion during market
downturns . While clustering techniques can efficiently detect static
structures and segment complex datasets, they do not account for
sequential dependencies, making them less suitable for analyzing
dynamic financial behavior.

To address the limitations of single-method approaches, recent literature
has emphasized hybrid models that integrate clustering with probabilistic
or deep learning frameworks. Guidolin and Timmermann demonstrated
that hybrid regime switching models can significantly improve forecasting
accuracy by combining cross-sectional segmentation with temporal
transition estimation . In financial applications, Nguyen et al.
developed a hybrid K Means and Gaussian Mixture Model framework for
stock market regime detection, achieving higher interpretability and
predictive stability . Zhang et al. proposed a combination of K Means
clustering and HMM for modeling crude oil price dynamics, showing that
hybrid models outperform single-stage approaches in identifying
structural shifts . Within cryptocurrency research, Lahmiri and Bekiros
used machine learning techniques such as K Means, Support Vector
Machines, and Neural Networks to classify Bitcoin price states, while Yan
et al. applied an HMM-based clustering ensemble to detect abrupt regime
transitions in Ethereum and Bitcoin ,[20]. These studies confirm that
combining unsupervised and probabilistic models provides a more
comprehensive view of market structure and dynamics.

Other notable studies have explored advanced hybrid or deep learning
approaches for cryptocurrency regime analysis. Galeshchuk and
Mukherjee applied artificial neural networks to forecast Bitcoin prices,
emphasizing the nonlinear and chaotic nature of cryptocurrency data

. Patel et al. incorporated Long Short-Term Memory networks with
regime detection to improve short-term predictive performance in volatile
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markets . Choi et al. examined the use of Hidden Semi-Markov
Models to identify long-duration market cycles, concluding that traditional
Markovian assumptions may underestimate the persistence of
cryptocurrency regimes . These contributions underscore a growing
recognition that cryptocurrency markets are better understood as
nonlinear adaptive systems where machine learning methods can reveal
probabilistic transitions between behavioral states.

Despite these advancements, there remains a gap in the literature
concerning the integration of clustering and regime-switching models
specifically tailored for the Bitcoin market. Most existing works either
focus on identifying static regimes through clustering or model time-
dependent transitions without considering initial structural segmentation.
The present study bridges this gap by proposing a hybrid K Means and
Hidden Markov Model framework that simultaneously captures the cross-
sectional heterogeneity of market states and their temporal evolution.
The model provides an interpretable, data-driven approach to regime
detection that aligns with the stochastic and adaptive nature of
cryptocurrency markets. By combining the descriptive power of clustering
with the temporal precision of HMM, this research contributes to a deeper
understanding of regime persistence, transition dynamics, and risk
behavior in blockchain-based financial ecosystems.

The methodological process of this study is designed to analyze the
Bitcoin market systematically through a hybrid framework that integrates
K Means clustering and the Hidden Markov Model. The complete
research steps are illustrated in , Which presents the sequence of
processes starting from data collection, preprocessing, feature
extraction, clustering, probabilistic modeling, and model evaluation. This
figure serves as a conceptual roadmap that shows how raw high-
frequency Bitcoin data are transformed into interpretable market regimes
through both structural and temporal analysis. The framework ensures
that each stage contributes logically to the detection of latent market
states and their probabilistic transitions. By following the procedure

shown in , the research provides a transparent and reproducible
workflow for detecting financial market regimes within blockchain-based
ecosystems.
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The dataset used in this research consists of one-minute Bitcoin to United
States dollar trading data obtained from a public cryptocurrency
exchange database named btcusd_1-min_data.csv. The dataset
contains millions of observations from 2012 to 2021, including open, high,
low, and close prices as well as trading volume. Since the high-frequency
data often contain noise and irregular timestamps, a preprocessing stage
was necessary to clean and standardize the dataset. All timestamps were
converted into Coordinated Universal Time format, and missing values
were corrected through forward filling for short gaps . Longer
discontinuities were removed to avoid data distortion. The data were then
resampled into five-minute intervals by selecting the last available trade
price in each interval, which effectively reduces microstructural noise
while maintaining meaningful short-term market dynamics

Two essential features were extracted to represent the fundamental
market characteristics: logarithmic return and rolling volatility. The

Haryani (2025) J. Digit. Mark. Digit. Curr. 80



Journal of Digital Market and Digital Currency

logarithmic return r, measures the proportional change in price between
two consecutive time periods and is calculated as:

=1 ( fr ) 1
e = In Py (1)
P, and P;_; denote the closing prices at time t and t — 1. The logarithmic
transformation stabilizes the variance and normalizes the distribution of
returns, making them more suitable for statistical modeling. The rolling
volatility, on the other hand, measures the degree of dispersion in returns
within a moving time window and is calculated as:

o= - ) - ()

o; represents the volatility at time t, n is the length of the rolling window,
and 7 is the mean return within that window. These features capture both
the direction and magnitude of Bitcoin price changes. To ensure that both
variables contribute equally during the modeling stage, z-score
normalization was applied to eliminate scale differences between log
returns and volatility ,

After preprocessing and feature extraction, K Means clustering was
applied as an unsupervised learning technique to segment the dataset
into groups with similar statistical characteristics. The algorithm partitions
the data into K clusters by minimizing the within-cluster sum of squared
distances between data points and their respective cluster centroids. The
objective function to be minimized is given by:

]=ZK: > by —wl? )

i=1 XjECi

C; denotes the set of observations in cluster i, x; is the feature vector of
the j-th observation, and y; is the centroid of clusteri. The optimal
number of clusters K was determined using the Elbow Method, which
evaluates the reduction in total inertia as K increases. The analysis
showed that three clusters provided the best tradeoff between
compactness and separation , . Each cluster corresponds to a
specific market condition, namely bullish, bearish, or sideways. These
initial clusters serve as the structural basis for temporal modeling using
the Hidden Markov Model.

The Hidden Markov Model (HMM) was then employed to capture
temporal dependencies and estimate the probabilistic transitions
between market regimes . The HMM assumes that the observed data
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sequence 0 = {04, 0,, ..., 07} is generated by an unobserved sequence of
hidden states S = {s4, s,, ..., st} that follow a first-order Markov process.
The joint probability of observing the sequence given the model
parameters A = (4, B, m) is expressed as:

P(O1M) = ) b, (0) | [ @y ysebs, (00 )

S

is the transition probability matrix, a;; = P(s; =j | s;—1 =1i)is the
probability of transitioning from state i to state j, B = [b;(o,)] represents
the emission probabilities of observing o, given state j, and m, denotes
the initial state probability. The model parameters were estimated using
the Expectation Maximization algorithm implemented through the Baum-
Welch procedure, which maximizes the likelihood of the observed data.
This hybrid structure allows the model to learn both the spatial
segmentation of market behavior and its temporal evolution through
probabilistic state transitions.

Model performance was evaluated using the log likelihood and
the Bayesian Information Criterion (BIC) to ensure both accuracy and
parsimony. The log likelihood measures how well the model fits the
observed data, with higher values indicating a better fit, while the BIC
penalizes model complexity to avoid overfitting. The hybrid K Means and
HMM model achieved a higher log likelihood and a lower BIC value than
the baseline HMM model initialized with random parameters,
demonstrating its superior balance between accuracy and simplicity. The
regime labels identified by the model were also visually compared to
historical Bitcoin price movements, showing strong correspondence with
major events such as the 2017 price rally, the 2018 market correction,
and the 2021 recovery. Overall, the methodological framework
developed in this study provides a robust and interpretable foundation for
understanding the probabilistic structure of market regimes in
cryptocurrency trading and can be adapted to other blockchain-based
financial assets.

Hybrid K-Means—HMM for Bitcoin Market Regime Detection
Input
Bitcoin price series

{Pt}z‘;l
Output

Hidden market states S.and transition probabilities.
Step 1: Feature Extraction

Log return:

1, =1In <Pi1) (1)
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Rolling volatility:

1
o= |= (ry —7)? )
i=t—-n+1
Z-score normalization:
, _Xe T H
Xt = o 3)
Step 2: K-Means Clustering
Minimize within-cluster variance:
K
J= Dy-wmrr @
XjECi

i=1
Obtain cluster labels C;representing market regimes.

Step 3: Hidden Markov Model
Observed sequence:

0 = {01, 02, ey OT}
Transition probability:

a;j = P(st =j 181 =1) (5)
Likelihood:

HWD—Zmﬂdmrp&ﬁ%@) ®)
Estimate parameters 1 = (4, B, n)usmg Baum—WeIch
Step 4: Model Evaluation
Log-likelihood:
L=1In P01 (7)
Bayesian Information Criterion:

BIC =—-2L+kIn T (8)
End of Algorithm

The algorithm integrates structural clustering and temporal probabilistic modeling
to identify and evaluate Bitcoin market regimes.

Before the modeling process, the Bitcoin minute-level dataset (btcusd_1-
min_data.csv) underwent a rigorous preprocessing phase to ensure data
integrity and reliability. The dataset originally contained millions of
records detailing Bitcoin’s open, high, low, and close (OHLC) prices
along with trading volumes at one-minute intervals. To reduce noise and
capture meaningful market structure, the data were resampled into five-
minute intervals by taking the last-traded price within each interval.
Missing or irregular timestamps were corrected using time-based
interpolation, and extreme outliers caused by exchange downtime or
abnormal trades were removed based on z-score thresholds. After

Haryani (2025) J. Digit. Mark. Digit. Curr. 83



Journal of Digital Market and Digital Currency

cleaning, two key financial indicators, logarithmic returns (r;) and rolling
volatility (o), were computed to represent the short-term dynamics of
Bitcoin price movements. The log return was calculated as the natural
logarithm of the ratio between consecutive prices, allowing for variance
stabilization and capturing proportional price changes, while the rolling
volatility measured the standard deviation of returns within a moving
window to quantify short-term market uncertainty.

These derived variables capture the fundamental behavior of
cryptocurrency price evolution and serve as input features for both the K-
Means clustering and Hidden Markov Model (HMM) stages. Before
modelling, all features were standardized using z-score normalization to
eliminate scale bias and ensure that volatility did not dominate the
clustering process due to its higher magnitude compared to log returns.
The preprocessing stage effectively transformed the high-frequency,
noisy data into a stationary representation of market dynamics suitable
for machine learning analysis. This standardized dataset captures the
intrinsic  relationship  between volatility, return, and temporal
dependencies in Bitcoin price movements. provides the
descriptive statistics of the processed variables, showing the mean,
standard deviation, minimum, and maximum values, which highlight the
high volatility and wide dispersion characteristic of the Bitcoin market.

Descriptive Statistics of Bitcoin Market Data

Feature Mean Std. Dev. Min Max
Close Price
(USD) 8,732.41  10,485.23 65.53 67,617.00
Log Return 0.00021 0.00294 -0.0813 0.0759
Volatility (o) 0.00287 0.00311 0.0001 0.0392
Volume (BTC) 134.27 289.15 0.00 15,309.00
From , it is evident that the Bitcoin market demonstrates extremely

high variability, as indicated by the large standard deviations observed
across all statistical parameters. The mean value of the logarithmic
returns remains close to zero, implying that Bitcoin prices oscillate
around a stochastic equilibrium without exhibiting a persistent upward or
downward drift over time. This statistical neutrality reflects the high-
frequency, mean-reverting nature of cryptocurrency trading, where short-
term fluctuations are often driven by speculative activity, liquidity shocks,
or investor sentiment rather than long-term fundamentals. Meanwhile,
the elevated value of the rolling volatility (o, = 0.00287) underscores the
presence of frequent and pronounced price swings within short intervals,
confirming that the Bitcoin market operates under conditions of significant
uncertainty and nonlinear dynamics. Such characteristics, heavy-tailed
return distributions, volatility clustering, and abrupt regime shifts,
reinforce the rationale for employing a regime-based modeling approach,
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where the market is assumed to alternate between distinct behavioral
states such as stability, turbulence, and transition.

To obtain an initial segmentation of these underlying market states, the
K-Means clustering algorithm was applied to the standardized feature set
comprising log returns and volatility. K-Means was chosen for its
computational efficiency and ability to partition large-scale, high-
frequency data into homogenous groups based on Euclidean distance
minimization. Each observation was assigned to one of K clusters by
minimizing the within-cluster sum of squared distances from the cluster
centroid. To determine the optimal number of clusters, the Elbow Method
was employed, analyzing the trade-off between the number of clusters
and the corresponding reduction in total inertia. The inflection point of the
curve suggested that K = 3 offered the best compromise between
compactness (low intra-cluster variance) and separability (distinct inter-
cluster boundaries). The resulting three clusters were interpreted as
representing different market regimes, namely, Bullish, Bearish, and
Sideways phases corresponding to periods of rising, declining, and
stagnant price dynamics, respectively. These clusters encapsulate
distinct behavioral signatures of the Bitcoin market, providing a
meaningful foundation for subsequent probabilistic modeling using
Hidden Markov Models (HMMs). presents the cluster centroids
and their corresponding economic interpretations.

Cluster Centroids of K-Means Algorithm

Regime (Cluster) Mean Log Mean Market Behavior
Return Volatility
Cluster 0 0.0024 0.0011 Bullish Regime (price
increase, low volatility)
Cluster 1 -0.0018 0.0029 Bearish Regime (price drop,
high volatility)
Cluster 2 0.0003 0.0007 Sideways Regime (neutral,

stable price movement)

The clustering process effectively distinguishes between distinct
behavioral phases of the Bitcoin market, particularly separating periods
of elevated volatility and negative returns corresponding to bearish
conditions from those characterized by stable or positive price growth,
typically associated with bullish and sideways regimes. The centroids
derived from the K-Means algorithm reveal clear differentiation among
clusters, confirming that Bitcoin market dynamics are not uniform but
fluctuate between multiple latent states influenced by volatility
persistence, trading volume, and investor sentiment. The bearish cluster
is marked by high volatility and negative average log returns, signifying
rapid sell-offs or correction periods often following speculative bubbles.
Conversely, the bullish cluster exhibits lower volatility and positive mean
returns, representing stable price appreciation during periods of market
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optimism and liquidity inflow. The sideways cluster shows minimal
returns and moderate volatility, indicating consolidation phases where
market participants engage in equilibrium-seeking behavior after large
price movements. These findings validate the multi-regime hypothesis
that the Bitcoin market operates within alternating states of expansion,
contraction, and stagnation rather than following a single continuous
pattern.

To model the temporal evolution and probabilistic transitions between
these market regimes, the discrete cluster labels obtained from the K-
Means analysis were used as initial state assignments for training a
Hidden Markov Model (HMM). While K-Means effectively partitions the
data into static clusters based on feature similarity, it cannot capture
sequential dependencies and the dynamic nature of financial time series.
The HMM addresses this limitation by introducing a probabilistic
framework that estimates both the emission probabilities (likelihood of
observing a given return-volatility pair given a latent state) and transition
probabilities (likelihood of switching from one regime to another over
time). By learning these transition dynamics, the HMM identifies
persistence patterns within regimes such as prolonged bullish runs or
extended bearish corrections and quantifies the likelihood of regime
shifts triggered by market shocks. This hybrid modeling approach (K-
Means + HMM) thus provides a more realistic representation of Bitcoin’s
market structure, where short-term volatility bursts and long-term
sentiment shifts jointly determine the evolution of price behavior. The
estimated transition probability matrix summarizing these inter-regime
relationships is presented in

Estimated Transition Probability Matrix (A)

From/To Bullish Bearish Sideways
Bullish 0.76 0.18 0.06
Bearish 0.21 0.70 0.09
Sideways 0.12 0.15 0.73
The results presented in demonstrate that once the Bitcoin market

enters a particular regime whether bullish or bearish it exhibits a strong
tendency to remain in that state for an extended period. Specifically, the
self-transition probabilities of 0.76 for the bullish regime and 0.70 for the
bearish regime indicate a high degree of persistence, meaning that the
market tends to maintain its momentum rather than shifting abruptly. This
persistence reflects the herding behavior often observed in
cryptocurrency markets, where investor sentiment, speculative flows,
and algorithmic trading jointly reinforce prevailing trends. The sideways
regime, on the other hand, exhibits a persistence probability of 0.73,
acting as a transitional buffer between bullish and bearish phases. Its
moderate transition probabilities toward the other two regimes suggest
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that it serves as an intermediary stabilization zone where volatility
temporarily subsides before the market commits to a new direction.
These findings align with the stylized facts of financial time series
particularly volatility clustering and regime persistence supporting the
notion that Bitcoin prices evolve through periods of sustained momentum
rather than random fluctuations. Consequently, the transition matrix not
only quantifies the likelihood of regime shifts but also encapsulates the
temporal memory embedded within market dynamics.

The temporal evolution of these market regimes is visually illustrated in

, which depicts Bitcoin’s closing price over time with color-coded
segments corresponding to the regimes identified by the hybrid K-Means
and Hidden Markov Model (HMM) approach. The visualization reveals
distinct structural phases in the Bitcoin market, where extended green
segments correspond to bullish periods characterized by steady price
appreciation, while red segments highlight bearish downturns marked by
accelerated declines and elevated volatility. The gray segments
represent sideways movements, consolidation phases typically following
sharp rallies or corrections indicating temporary equilibrium conditions
within the market. Notably, the visualization captures major historical
events in the Bitcoin timeline, such as the 2017 bull run, the 2018 market
crash, and the 2020-2021 recovery cycle, validating the model’s ability
to detect macro-level regime transitions that correspond with real-world
phenomena. By smoothing abrupt transitions and filtering out short-term
noise, the HMM produces a more interpretable and temporally consistent
regime sequence, enabling researchers and practitioners to observe how
price dynamics evolve across multiple market phases. This integrated
visualization therefore bridges statistical inference and economic
interpretation, transforming abstract transition probabilities into an
intuitive narrative of market behavior over time.

75 i Regime (k-Means)
_— /J" T ™ R —— Bullish Bearish Sideways
A | ‘,«;){ [ ’L}. ] “ }\‘1 ' ‘
AU TR A
° /[ “y‘ { }‘ A
o }s“‘“ l_’ f ’ - ﬂmd] —
3 I (’l\e]] I YR
Y 55 | | ‘u | ,L,\‘
& F\, ‘ 141 | )J " Junag l'\l
ol A U TN T e
45 I \"MH , ‘\l?‘.J_u‘ﬂ i .
4.0
2012-61-01 2012-b1-15 2012-b2-01 2012-‘02-15 2012-b3-01 2012-b3-15
Time
Market Regime Detection in Bitcoin Price Series
From , it is evident that the model effectively captures the major

historical transitions of the Bitcoin market. For example, the bullish
regimes correspond to the 2017 and 2020 price rallies, while bearish
regimes appear during correction periods such as the 2018 and mid-2021
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downturns. The HMM'’s smoothing capability eliminates excessive noise
and avoids rapid state switching, thereby providing a realistic and
continuous representation of market phases.

Model performance was evaluated by comparing the log-likelihood and
Bayesian Information Criterion (BIC) scores between the hybrid K-Means
+ HMM and a standalone HMM model initialized with random
parameters. As presented in , the hybrid approach demonstrates
superior fit and stability.

Model Performance Comparison

Model Log-Likelihood BIC Score Interpretation
HMM (Random Init) -25,348.7 51,210.4 Moderate
model fit
K-Means + HMM (Hybrid) -24,762.5 49,982.1 Improved fit,

stable states

The hybrid K-Means and Hidden Markov Model (HMM) framework
achieves superior performance compared to the baseline HMM model
that uses random parameter initialization. The hybrid model produces a
higher log-likelihood value and a lower Bayesian Information Criterion
(BIC) score, indicating a more optimal balance between model
complexity and explanatory capability. In statistical modeling, a higher
log-likelihood value suggests that the model parameters better fit the
observed data, while a lower BIC value reflects an improvement in model
quality without introducing unnecessary complexity. This finding confirms
that the hybridization of clustering and probabilistic modeling provides a
more precise representation of the underlying market structure. The
integration of K-Means clustering as an initialization mechanism
establishes more stable starting conditions for the HMM training process.
This approach enhances parameter estimation accuracy and accelerates
the Expectation Maximization convergence procedure by reducing the
risk of the algorithm being trapped in local optima. Consequently, the
model captures a more accurate set of transition probabilities that reflect
the actual temporal dynamics and persistence characteristics of Bitcoin
price movements. These results demonstrate that unsupervised
initialization using K-Means produces a more consistent probabilistic
model, improving both computational efficiency and the interpretability of
latent states.

The improvement in model fit and stability highlights the strength of
combining the descriptive power of K-Means clustering with the temporal
learning capability of the Hidden Markov Model. The hybrid structure
successfully integrates static feature segmentation and sequential state
evolution into a single cohesive framework that represents the behavior
of financial time series more comprehensively. Through this integration,
the model captures both the structural heterogeneity across volatility-
return pairs and the temporal dependencies between consecutive

Haryani (2025) J. Digit. Mark. Digit. Curr. 88



Journal of Digital Market and Digital Currency

observations. As a result, it provides a more robust explanation of the
cyclical nature of Bitcoin market regimes. The empirical findings confirm
that Bitcoin’s price dynamics are better described by multiple persistent
states that evolve through probabilistic transitions rather than by a single
homogeneous stochastic process. This conclusion supports the
theoretical premise that cryptocurrency markets operate under complex
behavioral regimes influenced by momentum, speculative trading, and
information diffusion. A comprehensive summary of the key empirical
findings and their implications is presented in , which outlines the
detected number of regimes, their persistence durations, transition
dynamics, the performance advantage of the hybrid model, and the
potential applications of these insights in risk management and portfolio
optimization within blockchain-based financial ecosystems.

Summary of Findings

Insight Observation
Regime Count Three distinct regimes identified (bullish, bearish, sideways)
Regime Duration Average persistence of 70-76% in major phases

Higher probability of moving from bearish — sideways than

Transition Dynamics .
direct recovery

Model Superiority Hybrid K-Means + HMM outperforms standalone HMM

Regime detection offers potential for dynamic portfolio risk

Market Implication
management

Overall, the empirical findings reveal that the Bitcoin market can be
effectively characterized by three dynamic regimes, each exhibiting
unique statistical and behavioral properties. The hybrid modeling
framework enhances the interpretability of regime shifts by combining the
clustering capability of K-Means with the probabilistic structure of HMM.
This dual-layer approach provides traders, analysts, and policymakers
with a robust mechanism to detect structural breaks and adjust risk
strategies dynamically. Furthermore, the persistence probabilities
derived from the transition matrix imply that market momentum, whether
bullish or bearish, tends to be sustained over time rather than random,
supporting the partial predictability hypothesis of the cryptocurrency
market.

The empirical findings of this study show that the hybrid K Means and
Hidden Markov Model framework provides a comprehensive
understanding of the dynamic behavior of the Bitcoin market. The results
indicate that Bitcoin prices follow nonlinear patterns characterized by
distinct behavioral regimes that alternate between phases of growth,
decline, and temporary stability. The identification of three primary
regimes, namely bullish, bearish, and sideways, demonstrates that the
Bitcoin market does not behave as a purely random process but rather
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exhibits structured cyclicality influenced by investor sentiment and
liquidity flows. The persistence of these regimes supports the existence
of volatility clustering, a phenomenon in which periods of high volatility
are followed by similar conditions of turbulence, while stable phases tend
to continue until a significant external shock occurs. The high self-
transition probabilities observed in the bullish and bearish regimes, which
exceed seventy percent, indicate the presence of momentum effects and
herding behavior among market participants. These findings are
consistent with behavioral finance theories suggesting that collective
trading actions and psychological biases often reinforce existing price
trends in cryptocurrency markets.

The integration of K Means clustering with the Hidden Markov Model
effectively combines structural segmentation and temporal learning,
resulting in a model that captures both the cross-sectional variability and
the sequential evolution of market states. K Means clustering identifies
homogeneous groups of data based on return and volatility
characteristics, while the Hidden Markov Model captures how these
states evolve and transition over time through probabilistic inference.
This dual approach provides a richer understanding of market behavior
compared to single-layer models that treat price data as stationary or
independent. The hybrid framework, therefore reflects the real conditions
of the cryptocurrency market, which is highly adaptive and influenced by
dynamic interactions between traders, technological developments, and
macroeconomic factors. The results demonstrate that the Bitcoin market
operates as a complex adaptive system in which structural and temporal
elements interact continuously, producing alternating periods of
expansion, correction, and consolidation.

From an economic perspective, the detection of distinct regimes has
significant implications for investment decisions, portfolio management,
and policy formulation in blockchain-based financial systems. Investors
can use regime identification to optimize portfolio allocation, increasing
exposure during bullish periods and reducing risk during bearish
conditions. The transition probabilities generated by the Hidden Markov
Model provide early signals of regime shifts, offering valuable insight for
predictive trading and risk control. For regulators and policymakers, the
persistence of specific regimes suggests that monitoring volatility cycles
and liquidity trends is essential for maintaining market stability.
Understanding these dynamics can support the design of risk mitigation
frameworks that anticipate the propagation of shocks in decentralized
markets. Furthermore, the methodology proposed in this study can be
extended to other digital assets and decentralized finance ecosystems to
assess systemic risk and the contagion effects between interlinked
markets.

From a methodological standpoint, the hybrid K Means and Hidden
Markov Model framework contributes to the advancement of data-driven
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financial analysis by integrating clustering-based segmentation with
probabilistic temporal modeling. This approach addresses the limitations
of traditional econometric models, which assume linearity and
stationarity, by providing a flexible and adaptive structure capable of
learning complex market patterns. The strong model performance,
indicated by improved log likelihood and BIC values, demonstrates that
data-driven initialization can enhance the stability and accuracy of
sequential learning algorithms. The model’s ability to capture both
structural regimes and probabilistic transitions makes it a valuable
analytical tool for researchers and practitioners who seek to understand
financial phenomena characterized by uncertainty and rapid structural
change.

Finally, the findings of this study reaffirm that Bitcoin, as a representative
asset of blockchain-based finance, reflects both speculative and
fundamental aspects of market behavior. The consistent transitions
between regimes show that price movements are influenced by evolving
investor expectations, technological innovation, and macroeconomic
events. These observations align with the adaptive market hypothesis,
which argues that market efficiency changes in response to
environmental conditions and the collective learning of participants.
Therefore, understanding regime dynamics through the hybrid K Means
and Hidden Markov Model approach is not only valuable for predicting
price trends but also essential for enhancing market resilience and
supporting the sustainable growth of digital financial ecosystems.

This study examined the dynamic behavior of the Bitcoin market by
applying a hybrid analytical framework that combines K Means clustering
and the Hidden Markov Model. The results demonstrate that this
integrated approach can effectively identify and model the structural and
temporal characteristics of cryptocurrency price movements. Through the
combination of feature-based clustering and probabilistic state
transitions, the model successfully detected three distinct market
regimes, namely bullish, bearish, and sideways. Each regime exhibits
unique statistical properties that reflect different levels of volatility, market
sentiment, and liquidity concentration. The analysis further revealed that
the Bitcoin market displays a strong degree of persistence in both bullish
and bearish states, as indicated by high self-transition probabilities. This
persistence confirms the presence of momentum effects and the
influence of collective trader behavior, suggesting that the cryptocurrency
market evolves through a sequence of sustained phases rather than
purely random fluctuations.

The findings of this research provide several theoretical and practical
contributions. From a methodological perspective, the study advances
the application of machine learning and probabilistic modeling in financial
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analytics by demonstrating that hybrid approaches can overcome the
limitations of conventional econometric models. The integration of K
Means clustering for state initialization improved the accuracy of
parameter estimation and accelerated the convergence of the Hidden
Markov Model, leading to a more stable and interpretable representation
of regime dynamics. From a practical standpoint, the ability to detect and
quantify market regimes offers valuable tools for traders, risk managers,
and policymakers in blockchain-based financial systems. Investors can
use regime probabilities to make informed portfolio adjustments, while
regulators can employ similar models to identify periods of heightened
market risk and systemic vulnerability.

In a broader context, the results emphasize that Bitcoin and similar digital
assets operate under regime-dependent structures influenced by
investor sentiment, technological developments, and macroeconomic
shocks. The empirical evidence supports the adaptive market
hypothesis, which proposes that financial markets evolve through phases
of learning and adjustment driven by environmental changes and
collective behavior. By capturing the transitions among these regimes,
the hybrid K Means and Hidden Markov Model framework provides a
more nuanced understanding of market stability and transformation in the
cryptocurrency domain.

Future research can extend this work by incorporating additional features
such as transaction volume, on-chain activity, and network indicators to
enhance the explanatory power of the model. The application of more
advanced techniques, such as deep learning based state models or
multivariate regime detection, may further improve prediction accuracy.
Moreover, expanding the analysis to multiple cryptocurrencies or
decentralized finance instruments could offer new insights into cross-
market interactions and systemic risk propagation within the broader
blockchain ecosystem. Overall, the hybrid modeling approach proposed
in this study provides a strong foundation for future investigations into the
dynamics, predictability, and risk behavior of digital asset markets.
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